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Abstract

We study the dynamics of VIX futures and ETNs/ETFs. We find that contrary to classical

commodities, VIX and VIX futures exhibit large volatility and skewness, consistently with the

absence cash-and-carry arbitrage. The constant-maturity futures (CMF) term-structure can

be modeled as a stationary stochastic process in which the most likely state is a contango

with V IX ≈ 12% and a long-term futures price V∞
≈ 20%. We analyse the behavior of

ETFs and ETNs based on constant-maturity rolling futures strategies, such as VXX, XIV,

VXZ, assuming stationarity and through a multi-factor model calibrated to historical data.

We find that buy-and-hold strategies consisting of shorting ETNs which roll long futures or

buying ETNs which roll short futures produce theoretically sure profits assuming that CMFs

are stationary and ergodic. To quantify further, we estimate a 2-factor lognormal model with

mean-reverting factors to VIX and CMF historical data from 2011 to 2016. The results confirm

the profitability of buy-and-hold strategies, but also indicate that the latter have modest Sharpe

ratios, of the order of SR = 0.5 or less, and high variability over 1-year horizon simulations.

This is due to the surges in VIX and CMF backwardations which are experienced sporadically,

but also inevitably, in the volatility futures market.
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1 The Volatility Index: stylized facts

Volatility futures and exchange-traded products (ETPs) are broadly traded instruments in today’s

markets. VIX-related exchange-traded funds (ETFs) and exchange-traded notes (ETNs), launched

in early 2009, experienced exponential growth in trading volumes. There appears to be a strong

appetite by institutional investors for volatility products, for the purpose of managing tail-risk and

hedging, as well trading S&P500 option implied volatility as a stand-alone asset class. 1

The Chicago Board Options Exchange Volatility index, VIX, ([CBOE]) is equal, at any given

time, to the square-root of the value of a basket of short-term S&P500 options, in which the portfolio

weights depend on the moneyness and time-to-maturity of each constituent option. The portfolio’s

value corresponds to the fixed leg in a 30-day variance swap on the S&P 500 Index (for details, see

e.g., [Whaley1993], [CBOE]). In 2006, the CBOE launched VIX futures contracts which settle on

the spot VIX and provide a means of trading volatility as a commodity.

There is no well-accepted way to “carry” or to “store” VIX for delivery against a futures contract,

as one may attempt to do with index or commodity futures. The main reason for this is that

the weights of the VIX basket are not known before the settlement date. Therefore, “carrying”

VIX would imply dynamic trading (“rolling”) at-the-money-forward and near-the-money, constant

maturity, 30-day options. The cost of such strategies cannot be calculated accurately in advance.2

In the event of a sudden market shock, or the perception of an impending shock, the demand for S&P

500 puts, is met by option sellers which will raise option-implied volatilities. The lack of “storage”

also implies that, once the equity market’s demand for protection subsides, implied volatilities will

drop likewise. The conclusion is that VIX should be much more volatile than commodities such as

crude oil or equity indexes. 3

The top left plot of Figure 1 displays the VIX time series from 2004 through 2016. Noticeable

1A similar exchange-traded volatility market exists in Europe around the V STOXX index, which tracks the
short-term implied volatility of STOXX50, in Deutsche-Borse-XETRA.

2An additional complication for replicating VIX with options stems from the fact that VIX is defined as the
square-root of the value of the basket, but we shall not discuss this further.

3Certain commodities, such as electricity or natural gas, are technically difficult to distribute and store. Probably
for these reasons they give rise to VIX-like price spikes. On the other hand, crude oil, for example, benefits from
ample storage and transportation infrastructures, so that its price volatility is primarily linked to major changes in
production/delivery.
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spikes in the time series are see in October 2008 (Lehman Brothers collapse), June 2010 (Greek

debt crisis), August 2011 (U.S downgrade by Standard and Poor’s), and August 2015 (Reminbi

devaluation).

We find, empirically, that the time-series of VIX behaves like a stationary process. This state-

ment can be justified statistically, to some extent, using VIX end-of-day historical values for the

index. If we use the period from January 1 1990 to May 31, 2017 (6906 daily observations), Matlab’s

version of the Augmented Dickey-Fuller test (adftest) rejects the presence of a unit root, returning

a DFstat=-3.0357 with critical value CV= -1.9416 and pvalue=0.0031. We point out, however, that

adftest does not reject unit-roots over other time windows, particularly if the events of 2008 are

removed from the data. We also studied the stationarity of VIX by a different method, which does

not involve the parametric assumptions made in Dickey-Fuller by splitting the VIX time series into

two samples and performing a 2-sample Kolmogorov-Smirnoff (KS) test on the daily differences in

VIX. Figure 1 shows the results of the KS tests, which support stationarity, the histogram of VIX,

and a power-law fit to the right-tail distribution. The empirical mean is 19.1, the mode is 11.98,

and the right-tail can is fitted to a Pareto tail with exponent α = −3.4. This shows that, as a

random variable, VIX is definitely skewed to the right with a heavy tail. On the other hand, VIX

has never closed below 9 as of this writing. Once again, we find that we cannot reject a unit root

if the 2008 crisis is included in the portion of data before the split. Thus, statistically speaking, we

may accept stationarity of VIX if we include the 2008 period in the sample, but we also find that

tests conducted over smaller time windows may not be conclusive.

Taking into account the well-known theory of volatility risk-premium, [CW09], we expect that

typically long-dated futures trade higher than the long-term average of VIX. On the other hand,

the most likely level of the VIX empirical distribution is significantly lower than the average. This

is consistent with the fact the futures term-structure is typically upward-sloping, or in contango.

The presence of heavy tails for the VIX distribution also indicates also that, sporadically, spot

VIX will be higher than its long-term average, so there are periods of backwardation of the futures

curve, either partly (only for front-month contracts) or fully, across the entire term-structure. These

periods of backwardation can be seen as VIX surges rapidly, driven by exogenous news and the

4
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Figure 1: Top Left: The time series of VIX, from 2004 through 2016. Top Right: Two-sample

Kolmogorov-Smirnoff (KS) test for the daily changes of VIX, with different splitting dates in the data.

If the 2008 crisis is included in the left data sample, then KS does not reject. Bottom Left: Empirical

distribution from VIX time series. Mean=19.1 and mode=11.98. Bottom Right: Fit of a Pareto density

p(v) = c(v− v0)
a to the empirical distribution of VIX values over 25 (vertical axis in log scale). Estimated

parameters are v0 = 5, a = −3.4, and c = 8.8132.

increase in short-term option premia.

2 VIX Futures

Currently, VIX futures have 9 open monthly expirations as well as six additional contracts settling

weekly in the front of the curve4. VIX futures provide a straightforward approach for market

participants to position in 30-day forward near-the-money volatility corresponding to each of the

4 This article will concern the monthly contracts, where the bulk of the liquidity is concentrated.
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settlement dates. 5

To capture the evolution of the VIX futures term-structure, it is convenient to work with

constant-maturity futures (CMFs).6 Accordingly, we define V τ
t as the price of a theoretical fu-

tures contract with maturity (or tenor) τ observed at date t. In practice, V τ
t is defined as a linear

interpolation between the two successive monthly contracts which expire immediately before and

immediately after τ years, i.e. such that their maturities “bracket” τ . If τ is shorter than the

maturity of the first monthly futures, V τ is defined as the linear interpolation between spot VIX

and the price of the first contract. Denoting by F1 and F2 the prices of the monthly contracts (or

VIX and the first contract) which have maturities τ1 and τ2, τ1 ≤ τ < τ2, we have

V τ =
τ2 − τ

τ2 − τ1
F1 +

τ − τ1
τ2 − τ1

F2 . (1)

If F1 = VIX then τ1 = 0.7 With this approach, we can build the constant-maturity futures curve

from the available date on each trading date and perform statistical analysis on the data using daily

observations of the curves.

Our main modeling assumption is that the time-series of CMFs is stationary: i.e. for each τ the

time series V τ
t , 0 < t <∞ can be modeled as stationary process.

2.1 Principal Component Analysis

We considered the time series of daily settlement prices from February 8, 2011 to December 15,

2016 for the 9 open monthly VIX futures contracts, which have ticker symbols VX1, VX2, VX3,....,

VX9, as well as the (spot) VIX end-of-day value corresponding to each date. We discard the 9th

monthly contract, after we found that VX9 is not liquid and that the settlement prices tend to be

noisy and often missing. This leaves us with data on VIX and the first 8 monthly contracts. From

5VIX futures settle in the morning of the Wednesday of the week of the third Friday of the corresponding settlement
month.

6This is entirely similar to the concept of Constant Maturity Treasuries [H.15], see also [CK13] who first studied
it for VIX futures.

7Clearly, linear interpolation is a possible choice but by no means the only one. Linear interpolation shall be
replaced by a smooth function of τ later on, when we introduce a parametric model for the term-structure, but there
is little difference in practice, except for the somewhat annoying fact that the derivative with respect to τ has jumps
in the linear interpolation model.

6



this data, we constructed 8 CMFs using the linear weights as in (1), corresponding to the maturities

τj = j 30
365 with j = 0, 1, 2 . . . , 7, spanning from VIX (τ = 0 to 8 months. There are N = 1, 499

observed dates.

We considered the N × 8 data matrix

Vij = ln(V
τj
ti )− ln(V τj ) , i = 1, . . . N, j = 0, . . . 7,

where

ln(V τj ) =
1

N

N∑

i=1

ln(V
τj
ti ) .

We performed a singular-value decomposition of the data matrix. The singular value decomposition

(SVD) decomposes the centered matrix,

V = USψ′ ,

where U is an N × 8 orthonormal matrix, S is an 8 × 8 diagonal matrix containing the singular

values, and ψ is an 8× 8 orthonormal matrix whose columns are the principal components used to

form any given futures curve. In other words, we have

ln(V
τj
ti ) = ln(V τj ) +

8∑

ℓ=1

aiℓψjℓ ,

where the coefficient matrix is a = US. Figure 2 shows the results of the PCA.

We note that this analysis differs from [CK13], where the authors used PCA to analyze 1-day

log-returns; see also [LS], [Laloux et al.], and [Dobi]. In contrast, we consider here the fluctua-

tions of the VIX futures curve around its long-term average. This is consistent with the mean-

reversion/stationarity assumption, and the ansatz described above. In other words, this approach

to PCA is intended to determine various curves which are needed to ‘reconstruct” the CMF curve

at any particular date, viewed as a superposition of shapes. We call this the Equilibrium PCA, to

distinguish it from the analysis [CK13]. Equilibrium PCA provides an identikit of the VX curve,

7



in the spirit of image recognition: each component is seen as providing a “shape” or feature which

is superimposed to the average, with a corresponding loading coefficient. Each curve in the data

would correspond to a set of loadings applied to the different principal components.

We found that the first principal component accounts for 72% of the term-structure shape,

adding the second component increases it to 90%, adding the third increases it to 96%, and fourth

increases it to 97%. In addition, Figures 3 and 4 show poor quality for selected dates of fit when

having only one component and a significant improvement from inclusion of a second. Hence, it is

reasonable to consider a parsimonious model with d = 2:

ln(V
τj
ti ) = ln(V τj ) +

2∑

ℓ=1

aiℓψjℓ + εi ,

where εi is a noise term.

Using the Equilibrium PCA we determine the most likely CMF curve given the data. To find it,

we consider the time series of the loadings on the different shape factors {aiℓ, i = 1, 2, ..., N} for each

ℓ and calculate the mode, or most frequently observed value, for each ℓ. Assuming independence

(or weak dependence) between the factors, we postulate that the most likely CMF curve is

mode
(
ln(Vti)

)
≈ ln(V ) +mode

(
ai1

)
ψ1 +mode

(
ai2

)
ψ2 .

The top plots in Figure 5 show the histograms of ai1 and ai2, and the bottom plot shows the

most-likely curve, which is clearly a contango.

8
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Figure 2: Left: For the CMFs, the singular values from the SVD’s diagonal matrix S shown on log scale.

The first singular component alone accounts for 72% of variation, adding the second component increases it

to 90%, adding the third increases it to 96%, and fourth increases it to 97%. Right: The first four singular

vectors; the “zero-th”-order component is just the overall average level ln(V τ ) = 1

N

∑
i ln(V

τ
ti
).

3 Rolling Futures and Exchange-Traded Notes

In a typical rolling futures strategy, positions are transferred from one expiration to another as

contracts expire. Perhaps the simplest example is investing in a long position in the first contract,

reinvesting all profit/losses in futures and, on the expiration date of the contract, close the long

position and simultaneously open a long position for the same dollar amount in the second contract8

3.1 Rolling the front-month contract

We denote the futures contract maturing at date T1 by Ft,T1
, where t is the current date. We

consider the situation of a fund that buys a number of contracts with notional value equal to the

equity in the fund, rebalances daily investing the profit/loss in futures, and rolls the entire position

into the next contract at the expiration date of the current contract9. We assume that the cash in

the fund is remunerated at rate r and neglect futures margin costs and other expenses. The total

8VIX futures settle in the morning of the contract’s expiration date. If we use daily close-to-close data it somewhat
simpler, to roll the position at the close of the day prior to the futures’ expiration date. One could also let the first
contract expire and open simultaneously a position in the second contract. However, the latter strategy would require
intraday data for backtesting purposes. We also reinvest profits, which is consistent with the way ETN indexes are
constructed.

9Rebalancing is not necessary, but it is consistent with how an ETP operates: the notional amount invested in
futures is equal to the total equity of the fund at any given time.
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Figure 3: PCA reconstruction of VX futures curve for April 10th 2014. PCA calculated from daily VX

curves from February 8th 2011 to December 15th 2016.
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Figure 4: PCA reconstruction of VX futures curve for August 8th 2011. These curves are not those of the

VIX’s most-likely state, but rather a tumultuous period around the first-ever downgrade of U.S. government

debt.
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value of the fund, It, satisfies

dIt
It

=





dFt,T1

Ft,T1
+ rdt if t < T2 − dt

dFt,T2

Ft,T2
+ rdt if t ≥ T2 − dt ,

(see Chapter 7 in [Ber16]). Here, T1 is the expiration date of the front contract, T2 is the expiration

date of the second contract, r is the interest rate, and dXt = Xt+dt − Xdt is the one-day change

from date t to t+ dt. We shall refer to It as the total return index or TRI of the strategy.

It is convenient to define the function

φ(t) =





Ft,T1
if t < T2 − dt

Ft,T2
if t = T2 − dt ,

(2)

which represents the settlement price of the front-month contract at time t. Writing

φ(t) = b(t)Ft,T1
+ (1− b(t))Ft,T2

, (3)

where b(t) = 1 if t < T2 and b(T ) = 0 if t = T2, we have

dφ(t) = b(t)dFt,1 + (1− b(t))dFt,T2 + (Ft,T2 − Ft,T1)δ(t− T2)dt ,

where δ(·) is the Dirac delta. Therefore, from equation (2) we have

dφ(t)

φ(t)
=
dIt
It

− rdt+
(Ft,T2

− Ft,T1
)

φ(t)
δ(t− T2)dt ,

or

dIt
It

=
dφ(t)

φ(t)
−

(Ft,T2 − Ft,T1)

φ(t)
δ(t− T2)dt+ rdt .

Suppose that the front-month contract price follows a stationary distribution. Then, heuristically,
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if the curve is in contango, rolling a long position will lose money on average and, conversely it will

earn money when the curve is in backwardation10. Similar considerations apply to other rolling

strategies. For instance, one could envision a strategy which rolls the futures in the middle of the

month, i.e. when θ + t = T1+T2

2 .11

3.2 Continuous (daily) rolling

Consider a yet-to-be-determined, decreasing function b(t) such that b(T1+) = 1 and b(T2) = 0,

where b(t) represents the fraction of the total number of contracts invested in the front contract,

and 1− b(t) is the fraction invested in the second-month contract. The (contract-weighted) average

maturity is therefore

θ(t) = b(t)(T1 − t) + (1− b(t))(T2 − t) .

If we set θ(t) = θ = constant , we find that b(t) = T−t−θ
T2−T1

and ḃ(t) = − 1
T2−T1

. According to the

definition of CMF futures given above, we have

φ(t) = b(t)Ft,T1 + (1− b(t))Ft,T2 = V θ
t ,

whence

dV θ
t = b(t) dFt,T1

+ (1− b(t)) Ft,T2
+ (Ft,T2

− Ft,T1
)

dt

T2 − T1
.

In particular, setting

w1(t) =
b(t)Ft,T1

V θ
t

, w2(t) =
(1− b(t))Ft,T2

V θ
t

,

10This is clear if the processes are discrete or have finite variation. The assertion is also correct in the case of
continuous-time diffusions, as we show hereafter

11Mid-month rolling is essentially the strategy used by the US Oil ETN, USO.
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we obtain

dV θ
t

V θ
t

= w1(t)
dFt,T1

Ft,T1

+ w2(t)
dFt,T2

Ft,T2

+
Ft,T2

− Ft,T1

V θ
t

dt

T2 − T

= w1(t)
dFt,T1

Ft,T1

+ w2(t)
dFt,T2

Ft,T2

+
[∂ln(V τ

t )

∂τ

]
τ=θ

dt .

(4)

It follows that the TRI of a continuous rolling long futures strategy with average constant maturity

θ satisfies

dIθt
Iθt

= w1(t)
dFt,T1

Ft,T1

+ w2(t)
dFt,T2

Ft,T2

+ rdt

=
dV θ

t

V θ
t

−
[∂ln(V τ

t )

∂τ

]
τ=θ

dt+ rdt . (5)

The daily return of the index is the sum of the daily percent change of the CMF with maturity θ

and a “drift” term which depends on the slope of the CMF curve at τ = θ. This term is negative if

the curve is in contango and positive if the curve is in backwardation at τ = θ. The weights w1(t)

and w2(t) correspond to the proportions of assets (dollar-weights) invested in each of the contracts

in order to maintain a constant maturity θ.12.

3.3 Exchange-traded funds and notes

Most, but not all, VIX ETFs and ETNs correspond to constant-maturity rolling strategies13. For

θ = 30 days, the above example corresponds to the investable index tracked by VXX, the most

liquid VIX ETN. Inverse VIX ETNs and ETFs, such as XIV and SVXY correspond to rolling short

12Because contract prices are typically different, the weights depend on the futures prices as well as on the times-
to-maturity of each contract.

13For information about VIX ETNs, see [CK13] and [ETNs]
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positions, i.e., have total-return indexes

dJθ
t

Jθ
t

= −w1(t)
dFt,T1

Ft,T1

−−w2(t)
dFt,T2

Ft,T2

+ rdt

= −
dV θ

t

V θ
t

+
[∂ln(V τ

t )

∂τ

]
τ=θ

dt+ rdt . (6)

In the latter case, the exposure to contango is positive: the strategy value has a positive drift if the

CMF curve is in contango. Leveraged ETFs, such as UV XY associated with long or short front

month continuous rolling are defined similarly.

Another noteworthy example of a VIX ETN which is not a simple rolling futures strategy, is

the VXZ, which is constructed using 4 rolling contracts VX4, VX5, VX6 and VX7. It corresponds

to the phi-function

φ2(t) =
b(t)

3
Ft,T4

+
1

3
Ft,T5

+
1

3
Ft,T6

+
1− b(t)

3
Ft,T7

,

where b(t) drops linearly from 1 to zero between T3 and T4. The corresponding total-return index

is defined by

dIV XZ

IV XZ
t

=
dφ2(t)

φ2(t)
−

1

3φ2(t)

3∑

i=1

(Ft,T4+i
− Ft,T3+i

T4+i − T3+i

)
dt+ rdt

=
dφ2(t)

φ2(t)
−

1

3φ2(t)

3∑

i=1

V θi
t

[∂lnV τ
t

∂τ

]
τ=θi

dt+ rdt ,

where θi = 90 + 30× i days. Notice that can we can also view φ2(t) as the average of three CMFs,

namely

φ2(t) =
1

3

(
V θ1
t + V θ2

t + V θ3
t

)
.

The average maturity of VXZ is θ1+θ2+θ3
3 = (120 + 150 + 180)/3 = 150 days, i.e. 5 months. Table

1 lists some of the VIX ETNs commonly traded in 2017.
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ETN leverage average maturity (months) inception date

VXX 1 1m Jan 2009
VXZ 1 5m Jan 2009
XIV -1 1m Nov 2010

UVXY 2 1m Oct 2011
ZIV -1 5m Nov 2010
TVIZ 2 5m Nov 2010

Table 1: Some of the VIX ETNs with high trading volume in 2017.

2010 2011 2012 2013 2014 2015 2016 2017
0

5000

10000

VXX and VXZ Daily Closing (3/1/2010 to 3/1/2017)

0

200

400

VXX

VXZ

Figure 6: The historical time series of VXX and VXZ prices. The VXX rolls between VX1 and VX2 to

maintain a 1-month average maturity, and the VXZ rolls between the VX4, VX5, VX6 and VX7 contracts

to maintain an average maturity of 5-months. The VXZ has less volatility than the VXX because it is an

average and because it rolls in longer-term contracts; the VXX rolls in 1 and 2-month contracts that are

typically more volatile.
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3.4 Integrated TRI equations and ETP buy-and-hold strategies

Next, we derive integrated form of the equations (5) and (6). By Itô’s Formula, we have

d lnV τ
t =

dV τ
t

V τ
t

−
1

2

(dV τ
t

V τ
t

)2
, (7)

where the last term on the right-hand side corresponds to the quadratic variation process of lnV τ
t .

A similar equation holds for lnIτt . From equation (5) we also deduce that the quadratic variations

of both processes are equal:

(dV τ
t

V τ
t

)2
=
(dIτt
Iτt

)2
.

Thus, equation (5) is equivalent to

d lnIτt = d lnV τ
t −

∂lnV τ
t

∂τ
dt+ rdt ,

or, in integrated form,

Iτt
Iτ0

= ert
V τ
t

V τ
0

exp
(
−

t∫

0

∂lnV τ
s

∂τ
ds
)
. (8)

In a similar vein, consider an inverse ETN which tracks a CMF with maturity θ. If we denote

this ETN (or its underlying index) by Jθ, we have, from (6),

Jτ
t

Jτ
0

= ert
V τ
0

V τ
t

exp
( t∫

0

∂lnV τ
s

∂τ
ds
)
. (9)

Equations (8) and (9) display an explicit relation between the total-return indexes of ETNs for

rolling futures, the constant-maturity futures and the slope of the CMF curve. The derivation of

the equations for total-return index of VXZ, as well as other ETNs based on rolling a basket of

futures, is left to the reader.
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3.5 Long-time behavior of ETNs under stationarity

As an application, consider a trader who sells short an ETN tracking Iτ and invests the proceeds

in a money market account paying interest r. The market value of his portfolio at time t in dollars

at time zero is ,

Iτ0 − e−rtIτt = Iτ0

(
1−

V τ
t

V τ
0

exp
(
−

t∫

0

∂lnV τ
s

∂τ
ds
))

.

Similarly, a trader who borrows Jτ
0 dollars and invests in the inverse ETN with maturity τ will

have a present value equal to

e−rt Jτ
t − Jτ

0 = Jτ
0

(
V τ
0

V τ
t

exp
( t∫

0

∂lnV τ
s

∂τ
ds
)
− 1

)
,

suggesting that the trader will achieve unbounded gains by investing in the inverse VIX ETN in

the long run.

If we assume that V τ
t is ergodic (a mild assumption in this context) then

lim
t→∞

1

t

t∫

0

∂lnV τ
s

∂τ
ds = E

[∂lnV τ

∂τ

]
,

where the expectation is taken over the equilibrium measure of the CMF curve process. We conclude

that:

Proposition: Assume that V τ
t is a stationary and ergodic process and that E

[
∂lnV τ

∂τ

]
> 0. Then,

lim
t→∞

(
Iτ0 − e−rtIτt

)
= 0 and

lim
t→∞

(
e−rtJτ

t − Jτ
0

)
= ∞ . (10)

In other words, under our assumptions, shorting the long VIX ETN and going long the short VIX

ETN both produce sure profits as t→ ∞.

Clearly, these theoretical profits are not free of risk. Equations (8) and (9) show that if V τ
t is

volatile, the random variable
V τ
0

V τ
t

can be very small even if t is large. Backwardation associated
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with high volatility could make
∂lnV τ

s

∂τ negative as well. Hence the return of the buy-and-hold, long

XIV, could be negative over any time interval [0, t].

In order to quantify the profitability, if any, of such strategies in the real world, we resort to a

simple parametric model for the evolution of CMFs. This model shall provide further insight on

whether of not we can regards CMFs as being a stationary process and on the performance rolling

futures strategies and trading ETPs.

4 A Parametric Model for CMFs

4.1 Lognormal Markov model for VIX

We consider a model in which log(V IXt) follows a multi-factor Gaussian diffusion, i.e.

V IXt = exp
( d∑

i=1

Xit

)
,

with each factor Xi following a one-dimensional Ornstein-Uhlenbeck (OU) process

dXit = κi (µi −Xit) dt+ σidW
P
it , κi > 0, i = 1, ..., d .

Here (WP
1t , ...W

P
d t) is a d-dimensional vector of Brownian motions with correlation matrix ρij .

According to this model, V IX is stationary with an equilibrium distribution such that VIX is

log-normal, with

E[lnV IX] =

d∑

i=1

µi , var(lnV IX) =

d∑

ij=1

σiσjρij
κi + κj

,

and, accordingly,

E[V IX] = exp
( d∑

i=1

µi +
1

2

d∑

ij=1

σiσjρij
κi + κj

)
.
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4.2 From VIX to CMFs

To extend this model to CMFs, we assume (see e.g. Cox, Ingersoll, Ross [CIR1985]) that there

exists a probability measure Q and a WP -adapted d-dimensional process λt (the market prices of

risk or MPRs) such that (i) the processes

dWQ
it := dWP

it + λitdt i = 1, ..., d ,

are standard Brownian motions under Q (with correlation ρij), and (ii) every futures price is the

expected value under Q of VIX at the corresponding expiration date:

V τ
t = EQ

t

[
V IXt+τ

]
= EQ

t

[
exp
( d∑

i=1

Xi t+τ

)]
. (11)

Following [CIR1985] and others, we choose the MPRs to be linear functions of the factors,

λit = pi + qiXit ,

where pi and qi are constants. With this special choice, Xt is distributed as a multi-dimensional

OU process under Q, i.e.

dXit = σidW
Q
t + κi (µi −Xit) dt, for i = 1, ..., d ,

where

κi = κi + σiqi ,

and

µi =
κiµi − σipi
κi + σiqi

.
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are new long-term mean and mean-reversion parameters14. In particular,

Xit+τ = e−κiτXit +
(
1− e−κiτ

)
µi + σi

t+τ∫

t

e−κi(t+τ−s)dWQ
s .

Substituting this expression in equation (11) and computing the conditional expectation, we obtain

the CMF curve process under the probability Q, namely similar to [Ber05, Ber08] we have,

ln V τ
t = ln V∞ +

∑

i

e−κiτ (Xit − µi)−
1

2

∑

ij

σiσjρij
κi + κj

e−(κi+κj)τ ,

where V∞ = exp
(∑

i µi +
1
2

∑
ij

σiσjρij

κi+κj

)
represents the asymptotic value of the CMF curve as

τ → ∞.

A further simplification can be made. Since Xit − µi has mean zero under Q, we set set

Yi := Xit−µi. Using the relation between the P and Q measures, we derive a stochastic differential

equation for Yi in the P -measure, namely

dYi = dXi = σidW
P
t + κi(µi −Xi)dt

= σidW
P
t + κi(µi − (Yi + µi)dt

= σidW
P
t + κi(µ

Y
i − Yt)dt ,

with µY
i = µi − µi.

The proposed statistical model for the CMF curve dynamics is:

V τ
t = V∞exp

(∑

i

e−κiτYi −
1

2

∑

ij

σiσjρij
κi + κj

e−(κi+κj)τ
)
, (12)

with

dYi = σidW
P
t + κi(µ

Y
i − Yt)dt .

14Notice that there is a one-to-one correspondence between (pi, qi) and (µi, κi). In other words, the passage from
the statistical measure P and the pricing measure Q is tantamount to modifying κi and µi for each factor.

22



Remark: According to this model, the equilibrium position of the CMF curve is given by

V τ
eq = V∞exp

(∑

i

e−κiτµY
i −

1

2

∑

ij

σiσjρij
κi + κj

e−(κi+κj)τ
)
.

4.3 Profitability of rolling futures strategies

We calculate the theoretical profit/loss of a rolling futures strategy with average maturity τ . From

(5), we have

dIτ

Iτ
= rdt+

dV τ

V τ
−
∂ln V τ

∂τ
dt .

Applying Itô’s Formula to (12), we find that

dV τ

V τ
=
∑

i

e−κiτdYi +
1

2

∑

ij

σiσjρije
−(κi+κj)τ dt .

Furthermore, differentiation of ln V τ with respect to τ in (12) yields

∂ln V τ

∂τ
= −

∑

i

κi e
−κiτYi +

1

2

∑

ij

σiσjρije
−(κi+κj)τ .

Subtracting one expression from the other and rearranging,

dIτ

Iτ
= rdt+

∑

i

e−κiτ (dYitdt+ κi Yit) dt

= rdt+
∑

i

e−κiτ (dYidt+ κi Yitdt+ (κi − κi)Yit) dt

= rdt+
∑

i

e−κiτσidW
P
i +

∑

i

e−κiτ (κiµi + (κi − κi)Yit) dt

= rdt+
∑

i

e−κiτσidW
P
i +

∑

i

e−κiτ (κiµi + (κi − κi)(Yit − µi)) dt .

We conclude that the expected value of the drift for a (long) rolling futures strategy under the

stationary distribution is:

r + E
[∑

i

e−κiτ (κiµi + (κi − κi)(Yit − µi))
]
= r +

∑

i

e−κiτκi(µi − µ̄i) .
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Setting

m(τ) =
∑

i

e−κiτκi(µi − µ̄i) ,

the conclusion is that shorting the long futures ETN has positive drift if and only if

m(τ) < 0 .

Setting

s2(τ) =
∑

ij

σiσjρije
−(κi+κj)τ ,

we conclude that the Sharpe ratio of the short futures rolling strategy with constant maturity τ is

SR = −

∑
i e

−κiτκiµi

s(τ)

=
1

s(τ)

∂lnV τ
eq.

∂τ
−
s(τ)

2
.

In the next section we estimate the model and provide various numerical results regarding the

profitability of rolling futures strategies based on this model.

5 Parameter Estimation

Based on the PCA from Section 2.1 and [CK13] we consider the parametric model of Section 4 with

d = 2. We estimate parameters for this model by fitting to historical futures data. The log-VIX

factors can be written as

X1t = µ1 + σ1

∫ t

−∞

e−κ1(t−s)dWP
1s ,

X2t = µ2 + σ2

∫ t

−∞

e−κ2(t−s)dWP
2s ,
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where dWP
1tdW

P
2t = ρdt. The process (X1te

−κ1τ , X2te
−κ2τ ) is a stationary bivariate OU with mean

(µ1e
−κ1τ , µ2e

−κ2τ ) and covariance matrix

cov(X1te
−κ1τ , X2te

−κ2τ ) →




σ2
1e

−2κ1τ

2κ1

ρσ1 σ2e
−(κ1+κ2)τ

κ1+κ2

ρσ1σ2e
−(κ1+κ2)τ

κ1+κ2

σ2
2e

−2κ2τ

2κ2


 ,

as t → ∞. Stationarity of the factors make it possible for a likelihood function with enough data

to return good parameter estimates.

5.1 Filtering and parameter estimation

Using daily on VIX and VX contracts, we estimated the vector of parameters for the bivariate OU

model to fit the CMS curve. We employed a Kalman filtering approach with parameter estimates

being improved iteratively. Denote discrete daily times as

tℓ = t0 + ℓ∆t for ℓ = 0, 1, 2, . . . , N,

where

∆t =
1

252
.

The input data are futures prices observed daily and CMFs are computed for each day,

Vℓ =




ln(V IXtℓ)

ln(V τ1
tℓ

)

...

ln(V τ7
tℓ

)




with τj = j × 30 days for j = 0, 1, . . . , 7. Let the parameters of the OU process by denoted by Θ,

Θ = (µ1, µ2, κ1, κ2, µ̄1, µ̄2, κ̄1, κ̄2, σ1, σ2, ρ) .

25



Using the model

Vℓ = HΘXtℓ +GΘ + εℓ , (13)

Xtℓ+1
= AΘXtℓ + µΘ +∆Wℓ+1 , (14)

the coefficients are

HΘ =




1 1

e−κ1τ1 e−κ2τ1

e−κ1τ2 e−κ2τ2

...
...

e−κ1τ7 e−κ2τ7




AΘ =



1− κ1∆t 0

0 1− κ2∆t


 µΘ =



κ1µ1

κ2µ2


∆t ,

and where GΘ = GΘ
1 +GΘ

2 with

GΘ
1 = ln(V∞)−




µ̄1 + µ̄2

µ̄1e
−κ̄1τ1 + µ̄2e

−κ̄2τ1

µ̄1e
−κ̄1τ2 + µ̄2e

−κ̄2τ2

...

...

µ̄1e
−κ̄1τ7 + µ̄2e

−κ̄2τ7




,
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GΘ
2 = −

1

4




σ2
1

κ̄1
+

σ2
2

κ̄2
+ 4 ρσ1σ2

κ̄1+κ̄2

σ2
1

κ̄1
e−2κ̄1τ1 +

σ2
2

κ̄2
e−2κ̄1τ1 + 4 ρσ1σ2

κ̄1+κ̄2
e−(κ̄1+κ̄2)τ1

σ2
1

κ̄1
e−2κ̄1τ2 +

σ2
2

κ̄2
e−2κ̄1τ2 + 4 ρσ1σ2

κ̄1+κ̄2
e−(κ̄1+κ̄2)τ2

...

...

σ2
1

κ̄1
e−2κ̄1τ7 +

σ2
2

κ̄2
e−2κ̄1τ7 + 4 ρσ1σ2

κ̄1+κ̄2
e−(κ̄1+κ̄2)τ7




,

and with noise vectors

∆W p
ℓ ∼ iid N

(
0, QΘ

)

QΘ = ∆t




σ2
1 ρσ1σ2

ρσ1σ2 σ2
2




εℓ ∼ iid N (0, R) ,

where Eεℓiεℓj = Rij .

Given the history V0:ℓ, the posterior distribution of Xtℓ is normal with mean and covariance

denoted by

X̂Θ
ℓ = EΘ[Xtℓ |V0:ℓ] ,

ΩΘ = EΘ(Xtℓ − X̂Θ
ℓ )(Xtℓ − X̂Θ

ℓ )tr ,

and which are given by the Kalman filter,

X̂Θ
ℓ+1 = AΘX̂Θ

ℓ + µΘ +KΘ
(
Vℓ+1 −HΘ(AΘX̂Θ

tℓ
+ µΘ)−GΘ

)
,
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where

ΩΘ = (I −KΘHΘ)
(
HΘΩ̃Θ(HΘ)tr +R

)
−1

KΘ = Ω̃Θ(HΘ)tr
(
HΘΩ̃Θ(HΘ)tr +R

)
−1

Ω̃Θ = AΘ(AΘ)tr

−AΘΩ̃Θ(HΘ)tr
(
HΘΩ̃Θ(HΘ)tr +R

)
−1

HΘΩ̃Θ(AΘ)tr +QΘ .

We denote innovation process as

νΘℓ = Vℓ −HΘ(AΘX̂Θ
ℓ−1 + µΘ)−GΘ ,

which is an iid normal random variable under the null hypothesis that Θ is the true parameter

value,

νΘℓ ∼ iid N
(
0, HΘAΘΩΘ(HΘAΘ)tr +HΘQΘ(HΘ)tr +R

)
.

Hence there is the log-likelihood function,

L(V0:N |Θ, R)

= −
1

2

N∑

ℓ=1

∥∥∥
(
HΘAΘΩΘ(HΘAΘ)tr +HΘQΘ(HΘ)tr +R

)−1/2
νΘℓ

∥∥∥
2

−
N

2
ln
∣∣HΘAΘΩΘ(HΘAΘ)tr +HΘQΘ(HΘ)tr +R

∣∣ , (15)

where
∣∣∣ ·

∣∣∣ denotes matrix determinant. The maximum likelihood estimate (MLE) is

(Θ̂, R̂)mle = argmax
Θ,R

L(V0:N |Θ, R) ,

where the maximization must be performed over a suitably constrained space for Θ and R, e.g., κ’s

greater or equal to zero and R positive (semi)-definite.
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5.2 Qualitative analysis of parameter estimates

The MLE for Θ is hard to obtain because the parameter space is large and the likelihood is probably

not convex; the parameter Θ has 11 inputs and the matrix R has many more depending on the

number of CMF data used. Hence, the best we can do is implement a gradient search algorithm

to look for a local maximizer of the objective fiven by (15), and then do a qualitative analysis of

the output. Our a priori knowledge of the future curve gives us some a priori intuition on the

acceptable range for the model parameters’, which will be an important when analyzing a possible

value for Θ.

Table 2 has Θ estimates obtained using Matlab’s ‘fmincon’ to search for a maximizer to the

objective in (15), with input data being the daily closings of VIX and CMFs from February 2011

to December 2011 for the first set of estimates, and July 2007 to July 2016 for the next set of

estimates. The table shows how the search’s output depends on the input data; the output depends

on the range of dates and also the choice of CMFs. Overall, these estimates indicate an equilibrium

volatility for ln(V IX) changes of 90%, and a very ephemeral and volatile second mode, which

sporadically gives rise to partial or full backwardation of the CMFs. These statistical parameters

appear to give rise to most shapes which were observed historically with VIX.

Overfitting can be an issue for models that have many parameters. The MLE obtained by using

the Kalman filter does not overfit because of its a priori preference for the underlying OU dynamics

of equations (13) and (14). An alternative MLE can be obtained using an ordinary least-squares

estimator,

X̂Θ,lsq
ℓ =

(
(HΘ)trHΘ

)
−1

(HΘ)tr
(
Vℓ −GΘ

)
,

but this estimator could overfit as there would be no penalization if (X̂Θ,lsq
ℓ )ℓ=1,...,N did not resemble

an OU process. After the parameter estimation is complete, then X̂Θ,lsq
ℓ will be a good estimator

because the noise in fitting the futures curve is relatively small. Figure 7 compares the post-Θ-

estimation time series of X̂Θ,lsq
ℓ and X̂Θ

ℓ , from which it can be seen that they are very close.

To gain a sense of the quality of fit, Figure 8 shows the residuals of the filtered model. Namely, if

the model is correct and the correct parameter values used, then the innovations and the estimated
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Estimated Θ
Input data: 2/2011 to 12/2016,
with VIX and CMFs 1m to 7m.
µ̄1 3.8103 µ1 3.2957
µ̄2 -0.7212 µ2 -0.7588
κ̄1 1.1933 κ1 0.4065
κ̄2 10.8757 κ2 13.1019
σ1 0.6776
σ2 0.8577
ρ 0.4462

Estimated Θ
Input data: 2/2011 to 12/2016,
with VIX, 3m and 6m CMFs.
µ̄1 3.8094 µ1 3.2524
µ̄2 -0.7100 µ2 -0.7155
κ̄1 1.0215 κ1 0.3219
κ̄2 10.8739 κ2 13.0799
σ1 0.5931
σ2 0.9066
ρ 0.4266

Estimated Θ
Input data: 7/2007 to 7/2016,
with VIX and CMFs 1m to 6m.
µ̄1 -6.6216 µ1 -7.1367
µ̄2 9.7372 µ2 9.7608
κ̄1 0.6543 κ1 0.2010
κ̄2 5.9052 κ2 5.9389
σ1 0.5525
σ2 0.9802
ρ 0.6015

Estimated Θ
Input data: 7/2007 to 7/2016,
with VIX, 1m and 6m CMFs.
µ̄1 2.4581 µ1 1.8685
µ̄2 0.8002 µ2 0.7555
κ̄1 0.5505 κ1 0.1081
κ̄2 10.0013 κ2 12.3600
σ1 0.4294
σ2 0.7998
ρ 0.5073

Table 2: Top Panels: Estimated Θ using daily futures data from February 2011 to December 2016.

The terminal value of the log-likelihood was around 104. Using VIX and 7 CMFs, the long-term future

value is V∞ = 25.1206; using VIX, the 3 month and the 6 month CMF yields V∞ = 25.1202. The

parameter search was constrained to match the VIX’s statistical mode of 12.64 (i.e. eµ1+µ2 = 12.64)

and the mean constrained to match the VIX’s historical mean of 17.1639 (i.e. limt→∞ E0[V IXt] =

exp
(
µ1 + µ2 +

1

4

(
σ2
1

κ1
+

σ2
2

κ2
+ 4 ρσ1σ2

κ1+κ2

))
= 17.1639). The VIX mode is less than both estimates of V∞,

which is consistent with the hypothesis of a contango equilibrium.

Bottom Panels: Estimated Θ using daily futures data from July 2007 to July 2016. The terminal value

of the log-likelihood was around 104. Using VIX and 6 CMFs, the long-term future value is V∞ = 27.7316;

using VIX, the 3 month and the 6 month CMF yields V∞ = 29.2107. For this time period the VIX’s

statistical mode and mean were 13.79 and 21.56, respectively, which were the values used in constraining

the parameter search to match these values. Again, the VIX mode is less than both estimates of V∞, which

is consistent with a contango equilibrium.
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∆̂W
Θ

ℓ = X̂Θ
ℓ+1 − AΘX̂Θ

ℓ − µΘ should have normal distributions centered at zero. Both of these

residuals are centered at zero but have heavier tails, which is to be expected when dealing with

financial data. Nonetheless, the fit is useful going forward.

Finally, Figure 9 shows some CMF curves produce by the estimated parameters, one of which

is the equilibrium most-likely curve and the other is a deviation from equilibrium that raises short-

term VX prices. Recall the most likely curve from Figure 5 and see that the most-likely curve in

Figure 9 is close.
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Figure 7: The Kalman filter X̂Θ
ℓ and the least-square estimator X̂Θ,lsq

ℓ , both using the estimated Θ from

the bottom left panel of Table 2. Unlike the Kalman filter, the least-squares estimator has no a priori

preference to resemble an OU process, and hence an MLE for Θ based on X̂Θ,lsq
ℓ may overfit. However,

after the Θ estimation is complete the time series of X̂Θ
ℓ and X̂Θ,lsq

ℓ are close because the residual noise is

relatively small.

6 Application of 2-Factor OU Model to ETNs

6.1 Dynamics of ETNs

Let Iθ denote the value of a continuous rolling futures strategy with average maturity θ. For

instance, if θ = 30/360, we can view this as a model for the VXX ETN. We assume the parameters

of the model are given in Table 2 of Section 5.1. According to the results of Section 3 on rolling

futures,
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Figure 8: On the left is the histogram of the innovations νi using the estimated Θ from the bottom left

panel of Table 2, along with a line that is a normal distribution with the same mean and variance. On the

right is the histogram of the residuals X̂Θ
ℓ+1 −AΘX̂Θ

ℓ − µΘ for the same estimate of Θ.

dIθ

Iθ
=

2∑

i=1

σie
−κiθdWP

i +

2∑

i=1

σie
−κiθ (κiµi + (κi − κi)(Yi − µi)) dt.

This is a diffusion with a stochastic drift. The distribution of (Y1, Y2) is Gaussian and asymptotically

tend to a Gaussian distribution as t→ ∞ with mean (µ1, µ2), and covariance matrix

cov(Yt) →




σ2
1

2κ1

ρσ1 σ2

κ1+κ2

ρ σ1σ2

κ1+κ2

σ2
2

2κ2


 .

The equilibrium drift is therefore

m =

2∑

i=1

σie
−κiθκi(µi − µ̄i)

and the equilibrium volatility is

s =

√√√√
2∑

i,j=1

ρijσiσje−(κi+κj)θ .

The parameter vector Θ given in Table 2 produces curves that fit the data and which have

an equilibrium most-likely curve that is a contango. In this section we take those parameters and
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CMFs Produced by Fitted Parameters

X1 = µ1 X2 = µ2

X1 = µ1 X2 = µ2 + .2

Figure 9: Two possible CMF curves produced by estimated Θ give in the bottom left of Table 2. Taking

initial factor values of X1 = µ1 and X2 = µ2 is the (statistically) most-likely curve. Taking initial factor

values X2 > µ2 produces a curve with elevated short-term VX contracts.

simulate various ETNs that roll in VX contracts. Take a moment to remember that the Θ of Table 2

was estimated a priori of any ETN returns, which is important because this section will show how

the 2-factor OU model with these parameters can reproduce the historically observed statistical

behavior of the ETNs.

6.2 Simulated one-month ETN (VXX)

The first ETN that we simulate is a 1 month ETN with a roll yield equal to the slope of the

log CMF curve at θ = 1 month. For the 1M long ETN, the estimated Θ from the bottom left

panel of Table 2 yield the following equilibrium statistics are given in Table 3. Figure 10 shows a

10,000 independent sample paths from the 2-factor model along with the historical VXX. The VXX

appears to lie within the bulk of these sample paths, which is an indication that the model fitted

to the CMF curve is able to reproduce historical ETNs. Further analysis of the simulations is seen

in the histograms of Figure 11. These histograms show a normal distribution for the distribution
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1M ETN Equilibrium Statistics

[
∂lnV τ

eq

∂τ

]
τ=θ

= 0.5178 m = −0.3010

s = 0.6585 SR = m
s = −0.4570

Table 3: VXX equilibrium statistics given Θ from the bottom left panel of Table 2.
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Figure 10: The simulated 1 month ETN along with the historical VXX. The VXX appears to lie within

the bulk of these sample paths.

of the estimators for simulated drift, volatility and Sharpe ratios. The equilibrium statistics from

Table 3 are clearly at the center of the histograms, and where the historically estimated VXX drift,

volatility and Sharpe ratio of −.6418, 0.6301 and −1.0185, respectively, all of which are within

(or close to) the bulk of the simulated estimators. These estimators being within their respective

histogram’s bulk is a statistical non-rejection of the 2-factor model by the VXX time series data.
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Figure 11: Top Left: The histogram of estimated drifts for the simulated 1M ETNs. Historically, the 1M

ETN VXX recorded an estimated drift of m̂ = 1

N∆t

∑
ℓ

∆VXXtℓ

VXXtℓ

= −.6418 between 3/1/2010 and 3/1/2017,

which is within the bulk among simulated drift estimators. Top Right: For the same time period the

historically estimated volatility for the VXX was ŝ =

√
1

N∆t

∑
ℓ

(
∆ln(VXXtℓ)−∆ln(VXX)

)2

= 0.6301,

which is at the edge of the bulk among simulated volatility estimators. Bottom: The historically estimated

VXX Sharpe ratio m̂/ŝ = −1.0185, which is within the bulk among simulated Sharpe ratio estimates.

6.3 Simulated five-month basket ETN (VXZ)

The second ETN that we simulate is a 5 month basket ETN with a roll yield equal to the average

slopes of the log CMF curve at θ1 = 4 months θ2 = 5 months and θ3 = 6 months. The equilibrium

drift for this basket ETN is

m =
1

3

3∑

j=1

2∑

i=1

σie
−κiθjκi(µi − µ̄i) ,

but the volatility does not have a closed form so we estimate it empirically with simulation.

For estimated Θ from bottom left panel of Table 2, the equilibrium statistics are given in Table
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4. Figure 12 shows a 10,000 independent sample paths from the 2-factor model along with the

5M Basket ETN Equilibrium Statistics
Given Θ from Bottom Left Panel of

Table 2

m = −0.1189 s = 0.3504 (empirical)
SR = m

s = −0.3362 (empirical)

Table 4: VXZ equilibrium statistics given Θ from the bottom left panel of Table 2.

historical VXZ. The VXZ appears to lie within the bulk of these sample paths, but notice there

also appears to be less volatility in VXZ than in the simulated paths. Lower volatility in VXZ is

perhaps due to the fact that it is an average of contracts, and hence there is some diversification

effect. Figure 13 shows histograms estimating the distribution of the estimators for simulated drift,

volatility and Sharpe ratios. The historically estimated VXZ drift, volatility and Sharpe ratio are

−0.2735, 0.3131 and −0.8736, respectively, all of which are within (or close to) the bulk of the

simulated estimators indicating a statistical non-rejection of the 2-factor model by the VXZ time

series data.

6.4 Simulated one-month inverse ETN (XIV)

We now simulate a 1 month inverse ETN with a roll yield equal to the negative slope of the log

CMF curve at θ = 1 month. The 1 month inverse ETN has equilibrium statistics that are the

opposite sign as those of the 1 month given in Table 3, except for volatility which also has a

positive sign. Figure 14 shows a 10,000 independent sample paths from the 2-factor model along

with the historical XIV. The XIV appears to lie within the bulk of these sample paths. Figure

15 show histograms estimating the distribution of the estimators for simulated drift, volatility and

Sharpe ratios. The historically estimated XIV drift, volatility and Sharpe ratio are 0.5182, 0.6556

and 0.7904, respectively, all of which are within the bulk of the simulated estimators, and hence

there is statistical non-rejection of the 2-factor model by the XIV time series data.
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Figure 12: The simulated 5 month basket ETN along with the historical VXZ. The VXZ appears to lie

within the bulk of these sample paths.

7 Conclusion

We quantified the statistical behavior of VIX constant-maturity-futures in terms of a stochastic

model and showed how the time-series of ETP prices depend on the volatility of the CMF curve

as and as its slope. Since volatility is often viewed as a stationary, or mean reverting, and the

term-structure of CMF is typically in contango, shorting volatility via ETPs should be profitable,

in principle. In this paper, we are able to quantify the profitability of selling VIX through ETPs.

The results show that although, historically, such strategies have been profitable, the Sharpe ratios

achieved are relatively modest (les than the Sharpe ratio for holding the S&P 500). This is due to

the spikes in VIX accompanied by CMF backwardation which occur sporadically, but inevitably, in

the volatility market.
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Figure 13: Top Left: The histogram of estimated drifts for the simulated 5M basket ETNs with equal

weight of 1/3 in the 4,5 and 6 month CMFs. Historically, the 5M basket ETN VXZ recorded an estimated

drift of m̂ = 1

N∆t

∑
ℓ

∆XIVtℓ

XIVtℓ

= −0.2735 between 3/1/2010 and 3/1/2017, which is within the bulk among

simulated drift estimators. Top Right: For the same time period the historically estimated volatility

for the VXZ was ŝ =

√
1

N∆t

∑
ℓ

(
∆ln(VXZtℓ)−∆ln(VXZ)

)2

= 0.3131, which is at the near the bulk of

simulated volatility estimators. Bottom: The historically estimated VXZ Sharpe ratio m̂/ŝ = −0.8736,

which is within the bulk among simulated Sharpe ratio estimates.
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