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IMPLIED VOLATILITY SURFACES:
UNCOVERING REGULARITIES FOR
OPTIONS ON FINANCIAL FUTURES

ABSTRACT

It is well known that the implied volatilities of options on the same underlying asset differ
across strike prices and terms to expiration. However, the reason for this remains unclear.
Before the development of theory to explain this phenomenon, it may be helpful to better
understand the empirical record of implied volatility surfaces. If regularities are
discovered which are stable overtime, this may aid the development of theories to explain
implied volatility surfaces and provide a means to test alternative models. This paper
identifies these regularities and subsequent research will examine the implications of
these results.

While a number of papers have examined individual option markets and identified smile
patterns, it is not clear whether the conclusions found are based upon idiosyncrasies of a
particular market or more generally apply to options in other markets. This research fills
this gap in the literature by examining sixteen options markets on financial futures
(comprising four asset classes) and compares the smile patterns across markets.
Furthermore, this analysis considers a longer period of analysis than previously examined
in the literature. This allows assessment of the stability of the implied volatility patterns
for a variety of subperiods and testing of models outside of sample.

JEL classifications: G13
Keywords: Implied Volatility Surfaces, Volatility Smiles, Shocks, Risk Neutral
Processes, Skewness, Kurtosis, Heterokurtosis
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1. INTRODUCTION

If the Black-Scholes-Merton model [Black and Scholes (1973) and Merton (1973)]

accurately describes conditions in traded options markets, then the volatilities implied

from the market price for options on the same underlying asset would be identical

regardless of the strike price of the option or its maturity. However, it is now generally

accepted that the implied volatilities differ across strike prices for the same maturity and

across diverse expiration periods.1

A recent trend in the empirical investigation of implied volatilities has been to concentrate

on understanding the behaviour of implied volatilities across strike prices and time to

expiration  [see Jackwerth and Rubinstein (1996)]. This line of research assumes

implicitly that these divergences provide information about the dynamics of the options

markets. Another approach [Dupire (1992, 1994), Derman & Kani (1994) and Rubinstein

(1994)] suggests that the divergences of implied volatilities across strike prices may

provide information about the expected dispersion process for underlying asset prices.

These papers assume that asset return volatility is a [locally] deterministic function of the

asset price and time and that this information can be used to enhance the traditional option

pricing approach of Black & Scholes (1973). All these papers examine implied volatility

patterns at a single point in time and assume that option prices provide an indication of

the deterministic volatility function. Recently, Dumas, Fleming and Whaley (1996, 1998)

tested for the existence of a deterministic implied volatility function and rejected the

hypothesis that the inclusion of such a model in option pricing was an improvement in

terms of predictive or hedging performance compared with Black and Scholes (1973).

Their research examined whether at a single point in time, implied volatility surfaces

provide predictions of implied volatilities at some future date (one week hence).

This research looks at a different problem. The Dumas, Fleming and Whaley (1996,1998)

approach assumes the deterministic volatility function provides both a prediction of the

future levels of implied volatility and the relative shapes of implied volatilities across

strike prices and time. If the future levels of implied volatilities cannot be predicted, this

does not mean that the relative shapes of implied volatilities cannot be predicted.

Regularities in smile surfaces may be undiscernable when expressed in levels, which may

follow an unpredictable stochastic process2. Once the level of the implied volatility is

controlled for, we find considerable regularities in the relative shapes of implied volatility

surfaces.
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Secondly, Dumas, Fleming and Whaley (1996,1998) examine whether the levels

of implied volatilities for options with a certain time to expiration (i.e. 90 days) will

predict the levels of volatilities of options with a different time to expiration (i.e. 83

days). If the relative shapes of implied volatility surfaces depend on the time to

expiration, this might be the wrong comparison. This research will compare the relative

shapes of implied volatility surfaces for all options with the same time to expiration.

Given the substantial data available for this research, this will allow enough observations

to test whether option surfaces with the same time to expiration display regularities. As

with the previous problem, the levels of implied volatilities are controlled for by the

standardisation of the implied volatility surfaces.

If implied volatility surfaces (with the same term to expiration) retain the same

shape over time by structuring the problem in this manner, this could lead to a better

understanding of why smiles exist. As with Rubinstein (1994), the primary motivation of

this research is to assign economic significance to the functional form of the smile

patterns. In addition, it is necessary to test the stability of this functional form over time

for individual markets. A second motivation was to broaden the scope of this research by

comparing a wide range of options on financial assets. To date, most research has

concentrated on options on one asset [see Corrado and Su (1996) that looked at the S&P

500] or options on a relatively small number of assets in the same asset class [see Corrado

& Su (1997) that examined stock options on US stocks]. Therefore, this research fills a

gap in the literature with a cross-sectional analysis of implied volatility surfaces for

sixteen financial markets drawn from four asset classes: stock indices, bonds, foreign

exchange and forward deposits. Furthermore, this analysis will be done for a longer

period of analysis than has previously been examined in the literature, allowing

assessment of the predictive ability of the implied volatility functional form.

The paper is organised as follows. The second section will discuss the data

sources. The third and fourth sections discuss the standardisation procedure and provide

graphical results. The fifth section presents a simple model based on a simple polynomial

functional form and is motivated by the empirical results in section four. This is followed

by a test of this functional form using standard OLS regression that will allow the

coefficients of the statistical model to quantify the strike price effects and facilitate

comparisons between markets. At that point, the functional forms of the implied volatility

surfaces will be tested outside of sample.  Finally, conclusions and suggestions for further

research appear.
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2. DATA SOURCES

The options examined in this research are options on futures3. The following

markets were examined for options on stock index futures: the S&P 500, FTSE 100, DAX

and Nikkei 225. For option on bond futures: US Treasury Bonds, UK Gilts, German

Bundesanleihen (Bunds), and Italian Government Bonds (BTPs) were selected. For

options on currency futures, US Dollar/Deutsche Mark, US Dollar/British Pound, US

Dollar/ Japanese Yen and US Dollar/Swiss Franc futures were examined. Finally, for

options on 3 month Deposit Futures, the Euro Dollar, Euro Sterling, Euro D-mark and

Euro Swiss Franc markets were selected.4 For all of the option markets, the analysis

period extends back in time to include all the publicly available data. In most cases more

than 10 years were available. This allows us enough observations to conduct a meaningful

analysis.5 The individual options markets examined and the time periods of analysis for

each appear in Table A.

Underlying Asset Time Period of Analysis

S&P 500 Futures 25/03/1986 - 24/12/1996
FTSE Futures 02/01/1985 - 20/12/1996
Nikkei Dow Futures 25/09/1990 - 16/12/1996
DAX Futures 02/01/1992 - 20/12/1996

Bund Futures 20/04/1989 - 21/11/1996
BTP Futures 11/10/1991 - 21/11/1996
Gilt Futures 13/03/1986 - 22/11/1996
US T-Bond Futures 02/01/1985 - 15/11/1996

Deutsche Mark /US Dollar 03/01/1985 - 09/12/1996
British Pound / US Dollar 25/02/1985 - 09/12/1996
Japanese Yen / US Dollar 05/03/1986 - 09/12/1996
Swiss Franc / US Dollar 25/02/1985 - 09/12/1996

Euro Dollar 27/06/1985 - 16/12/1996
Euro Sterling 05/11/1987 - 18/12/1996
Euro D-mark 11/03/1990 - 16/12/1996
Euro Swiss Franc 15/10/1992 - 16/12/1996

Table A Time Period of Analysis of the Sixteen Underlying Assets Analysed

The data for the options and futures contracts was obtained directly from the

exchange where they trade.6 For all markets, the data obtained included the closing prices

of the options, the strike prices and the price of the underlying futures recorded at the

same time as the options closing price. Only futures and options contracts that were the

nearest contracts to expiration and traded on the quarterly expiration schedule of March,
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June, September and December maturities were considered. This was done to assure that

the derivative contracts were actively traded, thus reducing spurious effects due to

illiquidity. For the futures and options on 3-month deposits, the prices were re-expressed

as a forward interest rate by subtracting both the futures price and the striking prices of

the options from 100. Given this conversion, the calls (puts) on the Deposit futures were

reclassified as puts (calls) on the annualised forward interest rates.

As is standard, all options prices traded at the minimum level at the relevant

market or allowed a butterfly arbitrage were excluded [see Jackwerth and Rubinstein

(1996)]. Furthermore, to reduce the potential problem of nonsynchronous prices for the

options and underlying futures, only those implied volatilities from the available out-of-

the-money (OTM) option contracts (not admitting arbitrage) were examined. Bates (1991)

and Gemmill (1991) have shown that much greater deviations occur in the implied

volatilities for in-the-money (ITM) options relative to the OTM options. They suggest

that this is due to futures and ITM option prices not being recorded simultaneously. Thus,

if the strike price was equal to or below the underlying futures price, put options were

examined; otherwise call options were examined.7 The implied volatilities for all

American style options on Futures were estimated using the Barone-Adesi and

Whaley (1987) model and all European style options used the Black (1976) model. The

interest rate inputs were obtained from the Federal Reserve Bank in New York (US

Dollar Treasury Bill Rate) or from The Bank of England (LIBOR for all other currencies).

3. STANDARDISED IMPLIED VOLATILITY SURFACES: METHODOLOGY

While a number of approaches have been proposed to standardise implied

volatilities, the simplest approach is to create an index: the implied volatilities at each

strike price are expressed as the ratio to the implied volatility of the option closest to the

at-the-money (ATM) level. Fung and Hsieh (1991) and Natenberg (1994) used this

approach. This transformation is required because the levels of volatility are not constant

over time and vary across the markets. The logic behind this approach is that the relative

relationships between the volatilities and not the absolute levels are of interest. This

standardised volatility will be referred to as a Volatility Smile Index (VSI).

The strike prices must also be standardised to allow comparisons to be drawn. A

simple approach suggested by Fung and Hsieh (1991) and Jackwerth and Rubinstein

(1996) was to take the ratio of the strike price to the underlying price (with the former
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inverting this ratio). While this has practical advantages for market participants (namely it

is simple to reverse the equation to obtain actual strike prices), the approach is somewhat

misleading as the ratios are time-independent, while options prices are not. An approach

more consistent with the time-dependency of option prices is that suggested by Natenberg

(1994). This was slightly modified for this research and can be expressed as:

365/
)/ln(

τσ
ττ FX

              (1)

Where X is the strike price of the option, F is the underlying futures price and the square

root of time factor reflects the percentage in a year of the remaining time until the

expiration of the option. The sigma (σ) is the level of the ATM volatility. The inclusion

of the ATM volatility allows the strike prices to be expressed in standard deviation

terms.8  For this analysis, we assumed that the relevant time is calendar days and

expressed time as the percentage of calendar days remaining in the options life to the total

trading time in a year (which was assumed to be 365 days)9.

4. STANDARDISED IMPLIED VOLATILITY SURFACES: RESULTS

Using all available options prices for each of the sixteen markets, we converted

the levels of the implied volatilities into index form with the ATM implied volatility as

the numeraire. The ATM volatility was determined using a simple linear interpolation for

the two implied volatilities of the strike prices that bracketed the underlying asset price.10

The second standardisation was to re-express the strike prices using formula 1.

As the analysis was restricted to the quarterly expiration schedule of March, June,

September and December maturities, implied volatility surfaces with a maximum term to

expiration of approximately 90 days were obtained. Data was further pruned by restricting

the  analysis to eighteen time points from (the date nearest to) 90 calendar days to

expiration to  (the date nearest) 5 calendar days to expiration in 5-day increments.11

Finally, the analysis of the implied volatilities was limited to those strike prices in the

range ±4.5 standard deviations away from the underlying futures price.

To assess general patterns, all the implied volatilities (for the entire period of

analysis) were aggregated into each of the eighteen time periods to expiration. With these

(time to expiration) homogenous samples, the following regression proposed by Shimko

(1991,1993) was run:
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With the coefficients from this quadratic regression a fitted line was produced for

each expiration period and for each market. These results are graphed in Figures 1 for the

four stock index options, 2 for the four bond options, 3 for the four foreign exchange

options and 4 for the four deposit options.12 These figures seem to suggest that

consistencies in the general dynamics of the implied volatility surfaces occur within the

same asset class:

- Most stock index futures options have a relatively linear skewed pattern with
90 days to expiration and become more curved the closer to expiration.

- A similar pattern is observed for options on Bond Futures.

- Even greater consistency exists among the four foreign exchange options and
four deposit options markets.

These graphs are consistent with Shimko's (1991,1993) findings that a simple

quadratic function will yield a smooth well-behaved curve for a cross section of implied

volatilities. Furthermore, the degree of explanatory power for quadratic regression for

each of the eighteen periods is comparable to those reported by Shimko (1991,1993)13. If

the sole objective was to fit a curved line, this has been achieved. However, for our

purposes, this approach is unsuitable. The quadratic regression approach was intended to

fit implied volatilities not only with the same time to expiration but also

contemporaneously. In our analysis, the sample of implied volatilities represents a

grouping of all options with the same time to expiration but estimated on different dates.

Therefore, the quadratic approach provides little (prima facie) information about the

stability of the quadratic function over time. We only gain an understanding of the

average relationship over the entire period of analysis. In addition, this approach only fits

a curved line, whereas the goal here was to fit a curved surface. Therefore, to incorporate

the time dependency of the smile surfaces, a richer fitting approach was required.

5. MODELLING STANDARDISED IMPLIED VOLATILITY SURFACES

A logical starting point for an appropriate functional form to fit an implied

volatility surface is the approach suggested by Dumas, Fleming and Whaley (1996, 1998),

who tested a number of arbitrary models based upon a polynomial expansion across strike

price (x) and time (t). In this research, we extended the polynomial expansion to degree

three14 and included additional factors, which may also influence the behaviours of

volatility surfaces. We extended the findings of Rubinstein (1994) in order to assess if
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implied volatility patterns changed after the 1987 stock market crash for markets other

than the S&P 500. Furthermore, we examined how other individual market specific

shocks might affect the shapes of implied volatility surfaces for these markets.

We considered a Taylor's series expansion to degree three.  Expanding the

function ),( txf=σ with Taylor’s expansion series
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Given we had nine derivatives in the expansion, we constructed nine variables to

capture these effects15. In equation 2.2, σ is the standardised volatility (VSI), x is the

strike price expressed in terms of equation 1 and t is the term to maturity (in percentage of

a year). To capture the effect of the 1987 crash and market specific shocks, a dummy

variable was constructed, assuming a value of 0 prior to the event and 1 thereafter. To

determine when such a shock had occurred, we examined the exponentially weighted

unconditional volatility time series for each market. The first two most extreme spikes in

the unconditional volatility that occurred during the periods (see Table A) were chosen as

shock events. The dates of these two shocks appear in Table B.

Underlying Asset First Shock Second Shock
S&P 500 Futures 19/10/1987 13/10/1989
FTSE Futures 19/10/1987 16/10/1989
Nikkei Dow Futures 21/08/1992 07/07/1995
DAX Futures 05/10/1992 02/03/1994
Bund Futures 21/02/1990 13/06/1994
BTP Futures 05/10/1992 16/06/1994
Gilt Futures 30/09/1986 02/06/1994
US T-Bond Futures 09/06/1986 28/04/1994

Deutsche Mark /US Dollar 23/09/1985 21/08/1991
British Pound / US Dollar 23/09/1985 16/09/1992
Japanese Yen / US Dollar 23/09/1985 05/01/1988
Swiss Franc / US Dollar 23/09/1985 05/01/1988
Euro Dollar 18/12/1990 10/10/1994
Euro Sterling 16/06/1988 17/09/1992
Euro D-mark 10/09/1992 29/12/1992
Euro Swiss Franc 03/06/1997 15/09/1998

Table B, Dates on Which Two Major Shocks in the Unconditional Variance Occurred for
the Sixteen Markets Under Examination.
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On each of these dates, a relevant economic event was identified as the cause for

the shock to the unconditional return series. To assess the impacts on the strike price

effect, these dummy variables were multiplied by the first and second order strike price

variables from equation 2.2. For the S&P 500 and FTSE 100 futures, these two events

were the 1987 stock market crash and the 1989 mini-stock market crash. For the DAX

and Nikkei (only analysed after the 1989 mini-crash), the shocks to the unconditional

returns were country or market specific. For the DAX, the October 1992 shock was due to

the aftermath of the EMS crisis, when a number of major German trading partners

(Britain and Italy) were ejected from the exchange rate mechanism. The March 1994

shock was associated with a Bundesbank change in interest rate policy. The two shocks

for the Nikkei were both associated with the index falling below the psychologically

sensitive 15,000 level. Both events were associated with the release of unfavourable

macro-economic data regarding the Japanese economy.

For the bond markets, the first shocks tended to be country specific. The first

shock to the Bund market was related to issues regarding the re-unification of West and

East Germany. The first shock for the BTP market occurred in June 1992 when Denmark

rejected the Maastricht treaty in a referendum and ultimately led to the ERM currency

crisis occurring in the Fall of 1992. For the Gilt market, the first major shock occurred in

September 1986 and was associated with a change in monetary policy by the Bank of

England. For the US T-Bond market, the first major shock occurred after a June 1986 G7

meeting (and was due to perceived conflicts between United States and Japanese

economic policies). For all the bond markets, the second shock occurs in the Spring of

1994 and was associated with the pre-emptive rise in the Discount Rate by the US Federal

Reserve to stem perceived inflationary pressures.

For all four currency markets, the first shock was associated with the concerted

intervention in the currency markets by the Group of Seven (G7) to put pressure on the

US Dollar, which was perceived as over-valued. The second shock for both the Swiss

Franc and Japanese Yen occurred in January 1988 and was seen as an aftermath of the

1987 Stock Market Crash when both Swiss and Japanese investors began reducing

holdings of US investments. The second shock for the British Pound came on September

16th, 1992 when the British Pound was ejected from the European Monetary System by

speculative pressures. For the Deutsche Mark, the second shock occurred in August 1991

and was due to market uncertainty regarding the success of the re-unification of West and

East Germany.
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Many of the shocks for the deposit futures are similar to the experiences for the

currencies. For example, the second shock for Euro Sterling and both shocks to Euro D-

mark are associated with the expulsion of Sterling from the EMS in September of 1992.

The first shock for the Euro Sterling market was associated with a change in Bank of

England interest rate policy in June 1988. For the Euro Dollar, the two shocks (December

1990 and October 1994) were also associated with changes in US interest rate policy.

The shocks to the Euro Swiss occurred in June 1997 and September 1998 and were

associated with a massive inflow of funds from EU investors who anticipated weakness in

the soon to be launched Euro.

Finally, there is concern that important information has been removed from the

analysis by the process of standardising the strike prices and implied volatilities. To

examine the possible contributions of these two elements, the level of the ATM implied

volatility and the (natural logarithm of) futures prices were included in the model16. To

understand the dynamics of strike price effects better, combination variables were

determined [the products of the first and second order strike price effects in equation 2.2

with the level of the ATM implied volatility and the level of the log futures price].

The final form of the model can be expressed as:

εβββ

ββββββββ

ββββββββ
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   (3)

Given the model is a mixture of regular variables and dummy variables, a logical

estimation procedure would be an analysis of covariance (ANCOVA) with the

standardised implied volatilities (VSI) as the dependent variable. Using a standard OLS

approach, problems with heteroskedasticity and serial correlation were found. While

alternative regression approaches were examined to correct for each of these problems, it

was deemed more convenient to present these results using the Newey-West (1987)

estimator for the weighting covariance matrix. While this approach was sufficient to

address problems of heteroskedasticity, problems with serial correlation remained

(indicated by Durbin-Watson statistics). To address this problem, two additional variables

were included in the model. The first was the lagged level of the VSI [VSI(-1)] and the

second was a simply moving average of the residual terms [MA(1)]. The addition of these

two terms is required to remove serial correlations that arose if the static equation [(3)

without these terms] was used. Hendry & Mizon (1978) and Mizon (1995) use a similar
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approach. They argue that the existence of serial correlation indicates model

misspecification and thus, the model must be respecified instead of adopting the faulty

alternative of correcting for serial correlation. They demonstrate that this simple

respecification of equation (3) from a static to a dynamic equation will yield more

consistent estimates.

Given that the estimation of equation (3) is at the heart of this research, one must

be sensitive to misspecification both in the structure of the model and in the estimation

procedure. Such potential causes for misspecification include: 1) Omission of Critical

Variables, 2) Existence of Heteroskedastistic conditional distributions, 3) Serial

Correlations in the residuals and 4) Multi-collinearity in the independent variables.

One of the most challenging problems with any experimental design is the

selection of the variables and the possible of critical variables. One potential variable for

inclusion is the level of short-term interest rates. This was initially included in the

analysis and provided only a marginal contribution for the bond and currency markets.

This effect disappeared when alternative regression approaches were done. Other research

by Peña, Rubio and Serna (1999) has found that the bid-ask spread of the options (as a

proxy for liquidity costs) and volume related variables (in both the options and the

underlying asset markets) are statistically significant when explaining the volatility smiles

of IBEX options. While this research does not consider these impacts, it may prove

fruitful for future research to include these variables in Equation (3). Nevertheless, the

estimation of Equation (3) in the current form explains the vast majority of the variance in

the implied volatility surfaces and it is possible that while these effects are significant,

they are of secondary importance.

Apart from these variables, it is not obvious which other variables could be

included. It is apparent that shocks do play a role in the dynamics of implied volatility

processes. However, it is not clear that the shock events selected are the relevant events.

Perhaps period specific events were missed. To examine if this is the case the regression

was rerun including all the individual contracts from 1985 to 1996 as dummy variables.

Very few of the dummy variables were significant and the inclusion of these variables

does not substantively alter the estimations of the coefficients of the independent

variables from Equation (3).

To assess the problem of heteroskedasticity, weighted least squares regressions

were run for all sixteen markets. Initially, we followed the lines of Neter, Wasserman &
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Kutner (1985) and Kvålseth (1985) to correct solely for this problem. Subsequently, the

more general approach of Newey-West (1987) was used (which should address both

heteroskedasticity and serial correlation). Both approaches corrected for the problem and

yielded similar signs and magnitudes of the estimated coefficients of the model.

The initial approach chosen to resolve the problem of serial correlations in the

residuals is the Generalised Differences approach to Generalised Least Squares (GLS). In

addition, the Newey-West (1987) estimator for the weighting covariance matrix was also

used. As was previously indicated, the Newey-West (1987) estimator failed to correct for

the serial correlation and the model was respecified along the lines suggested by Hendry

& Mizon (1978) and Mizon (1995). While a number of the variable coefficients display

statistically different values using the alternative estimation procedures, none of the signs

of the impacts changed. Given the primary objective of this research is to assign

economic significance to the estimation of equation (3), the fact that the statistical

significance of the coefficients  (and the sign of the impact) are retained once alternative

regression approaches are used, leads us to conclude the model is robust to the method of

estimation.

Finally, by design many of the variables in the regression are highly correlated

and this could possibly introduce a problem of multicollinearity. For example, it could be

argued that this regression model is incorrect because the ATM volatility appears on both

sides of the equation. This is because the dependent variable, the standardised volatility,

is indexed to the ATM volatility and many of the independent variables also include the

ATM volatility. However, this is not a serious problem as the inclusion of the ATM

volatility in the dependent variable (and many of the independent variables) simply

allows variables to be expressed in a standardised form17. For the remaining variables,

this potential problem was partially addressed by the choice of a step-wise selection of

variables in alternative regression approaches. Judge, et al (1980) suggest the use of a

Principal component regression to address this problem. We chose not to employ this

approach, as this would restrict the inclusion of the dummy variables in Equation (3) and

many of these (the Crash for example) provide considerable explanatory power to the

model and have important economic interpretations. Given the significance of many of

the included variables and the fact that these allow useful (and consistent) economic

interpretations to be drawn, the danger of risking multicollinearity is more than

outweighed by the danger of losing information by omitting important variables.
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Regardless of the alternative approaches for the estimation of Equation (3), it is

clear that this is a fairly complex model with a large number of variables. Normally, when

evaluating an equation with as many independent variables, there are too many

parameters to be determined satisfactorily. However, the number of observations is

extraordinarily high. In addition, the results have high degrees of explanatory power

(adjusted R squared). Another problem is that over-fitting may be endemic when the

number of independent variables is large relative to the number of observations and

subsequently, the models may fail to predict outside of sample. To examine this issue, the

models were re-estimated for the first half of the available data and this result was used to

forecast the relative implied volatilities in the second half of the available data set. The

models retain a high level of explanatory power outside of sample and have appropriate

coefficients. This will be discussed in a later section.

6. MODEL ESTIMATION AND TESTING

For the sake of convenience, only the results using the Newey-West (1987)

estimator for the weighted covariance matrix with the Hendry & Mizon (1978) and Mizon

(1995) model respecification are presented. Using this approach, equation (3) was

estimated for all sixteen markets, initially using all the available data. The results of these

statistical procedures can be seen in Tables 1, 2, 3 and 4 for the four asset classes, stock

index futures, bond futures, foreign exchange futures and 3 month deposit futures.

In these tables, the coefficients of the regression are presented along with the

standard error of the estimates and the t-statistic.18 For all variables that have a significant

t-statistic (at a 95% level), the results are presented in bold type. All results that are not

bolded were not significantly different from zero for the independent variables or from

100 for the intercept. When a particular variable was not selected in the forward stepwise

regression, this is represented by "-.--". We have also included the number of

observations included in the analysis, the adjusted R-squared statistic and the Durbin-

Watson statistic.

6.1 STOCK INDEX OPTIONS

In Table 1, we find that most of the strike price related independent variables are

statistically significant for the four stock index options19. Furthermore, the explanatory

power of each of the models is extremely high. The adjusted R-squared statistic is

between 0.9051 (for the FTSE) to 0.9682 (for the S&P). These results suggest that the
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models are explaining almost all the variance in the relative implied volatility surfaces.

The use of the modified Newey-West (1987) estimator indicates that problems with

serial correlations in residuals are not relevant.

Model interpretation begins with the first order strike price effect (skewness). For

all four stock index options markets, the coefficient (of β1) is insignificant. This suggests

that controlling for all other variables, there is no skew effect. At first glance, this is

counter-intuitive, as it is inconsistent with the smile surfaces for the stock index options

represented in Figure 1. However, caution must be exercised in the interpretation of the

model, as the overall strike price effects are an aggregate of a number of variables. To

gauge the overall first order strike price effect; one must compare all STRIKE related

variables including dummy variables associated with shocks.

For the S&P 500 and the FTSE 100 markets, the negative skew is a result of both

the 1987 stock market crash and the first shock (the 1989 "mini-Crash" for the S&P 500).

This confirms the finding of Rubinstein (1994) that the skew in the implied volatility

smile for the S&P was only observed after the 1987 crash. However, it appears that not

only the 1987 crash but also the 1989 correction contribute to the negative skewness of

smiles.  For the DAX and Nikkei, impacts of shocks on first order strike price effects

vary. For the DAX, neither the first or second shock significantly change the first order

strike price effect. For the Nikkei, the first shock caused the skewness effect to become

more positive (or less negative). Nevertheless, for all four markets the smile surfaces in

Figure 1 indicate negatively skewed implied volatility surfaces.

This apparent anomaly may be explained by fact that other variables cause the

overall negative skewness we observe. For DAX options, the level of the underlying

DAX futures has a significantly negative impact on the first order strike price effect

[coefficient for this effect (β8) of -5.2454]. For the DAX, it appears that when the futures

price rises, market participant increase their assessment of the probability of future market

weakness. This result is consistent with findings of Peña, Rubio and Serna (1999) for

Spanish IBEX-35 index options. They also found that the higher the levels of the futures

price, the more negative the skew. However, this effect is not observed for the other stock

index options markets.

For both the Nikkei and S&P 500 options markets, negative skewness is

associated with the level of the at-the-money volatility [coefficient for this effect (β7) of –
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11.9768 and -12.6910, respectively]. This is contrary to results found by Peña, Rubio and

Serna (1999) for IBEX-35 index options. They report that the degree of a negative skew

is inversely related to the level of the ATM volatility. A similar result is found FTSE

options (coefficient for β7)]. This suggests that the lower the level of the ATM implied

volatility, the higher the degree of the negative skew. Why these effects differ from those

reported by Peña, Rubio and Serna (1999) remain unknown and may be an important

question for future research. This might suggest that some common and systematic effect

occurs for European stock markets may exist (DAX options also have a positive effect,

but not significant).

The effects of the interaction variables that combine STRIKE and TIME

(coefficients β2 and β3) are more consistent across the four stock index options markets.

The negative coefficient for β2 and the positive coefficient for β3 imply that as the

expiration of the option is approached the degree of negative skewness is reduced.20 To

compare these effects properly, it is important to realise that the overall effect of time is a

combination of both variables. However, the signs and magnitudes of the effects are

similar, leading to a conclusion that the time dependency of the first order strike price

effect is general for all four stock index options.

The second order strike price effect (curvature) appears to be much more

consistent between the four stock index option markets  (coefficients β9 to β16). When the

variables have significant coefficients (apart from shock dummy variables) the sign of the

effect and the levels of significance are similar. For all four markets, the Beta coefficient

for the pure curvature effect (STRIKE2) is positive. The first order impact of STRIKE2

with TIME is negative for all the models and for the second order time dependent impact

is positive (when significant). This suggests that the curvature of the surfaces becomes

more extreme as expiration is approached.

The time effects for the curvature are opposite to those found for the skewness.

The degree of skewness becomes more negative as the more the time to expiration, while

the degree of curvature becomes less extreme. This is somehow counter-intuitive as one

would expect the degree of negative skewness to increase with the degree of curvature

[see Duque and Teixeira, (1999)]. This result suggests that a rational explanation for the

existence of smiles based upon either non-normal i.i.d. price processes or subordinated

stochastic volatility models would be precluded. The implications of these findings are

being considered in ongoing research, which examines alternative hypotheses to model
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smile behaviour. This apparent counter-intuitive result is an important clue as to the

choice of appropriate models, which are consistent with observed smile patterns.

The impacts of the 1987 crash and market specific shocks have different effects

for different markets. For the S&P 500, the 1987 crash led to a small (but insignificant)

increase in the level of curvature. Contrary, for the FTSE, the curvature was significantly

reduced after the crash. For both the S&P 500 and the FTSE options, the 1989 mini-crash

actually reduced the level of curvature. Neither of the shocks changed the curvature for

the DAX or Nikkei options. Thus, we conclude that the curvature in implied volatility

surfaces predates the 1987 crash and does not appear to change in a systematic manner as

market shocks occur.

Two variables that may prove fruitful in fostering our understanding of smiles are

the relationships between the levels of the expected variance and between the underlying

asset. For all four stock index options, there is a significantly negative coefficient for the

relationship between the level of the ATM volatility and the degree of curvature (β15).

This suggests that the higher the level of the expected variance, the flatter the curve of the

implied volatility pattern. This result was also observed by Peña, Rubio and Serna (1999)

for IBEX-35 index options. Furthermore, the level of the futures has an inverse

relationship to the curvature of the implied volatility smile for DAX and Nikkei options

[this fact is also pointed out by Peña, Rubio and Serna (1999) for IBEX options].

The final consistent effect for all four stock index options are the third order strike

price effects. The coefficient for STRIKE3 variable (β17) is positive for all four markets

and roughly of the same order of magnitude. One interpretation of this result is that the

degree of curvature of the implied volatility pattern is higher above the level of the

underlying futures and lower below.  This is consistent with the inverted "J" shape of the

implied volatility surfaces observed in Figure 1.

The other non-strike price related variables are for the most part insignificant

apart from the time-related variables. The fact that the intercepts of the regression are

statistically different from 100 might indicate the existence of errors in the determination

of some of the variables. However, alternative regression approaches reduce or eliminate

many of these effects without significantly affecting the sign or relative size of the

coefficients for the other independent variables.
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The inclusion of the VSI (Lag –1) and MA (1) variables (required to address

problems in serial correlations of the residuals) do not lend themselves to a simple

economic interpretation. Only for the S&P 500 options, are both terms significantly

important. Neither is important for the FTSE options and for the DAX and Nikkei

markets, only one of the two terms is significant (although the lagged VSI is barely

significant for the DAX).

6.2 BOND OPTIONS

For the Bond options markets, impacts of the independent variables are relatively

consistent (Table 2). While the explanatory power of the models is slightly less than those

observed for the Stock Index markets, the adjusted R-squared remains high (between

0.8457 for Gilt Options and 0.9243 for the US T-Bond Options). Furthermore, the

Durbin-Watson statistics indicate no serious problems with serial correlations in the

residuals.

 As with the stock index options, for two of the markets (Bund and BTP futures),

the pure first order strike price effect is insignificantly different from zero (β1). The

existence of a negative skew is due to market specific shocks for each of these markets

(see β5 and/or β6). Market shocks also change the nature or the skewness effect for the

other bond markets (Gilt and US T-Bond), including the 1987 Stock market crash.

However, while market shocks tend to increase the degree of the negative skew for stock

markets, the effect of the 1987 stock market crash was to make the US T-Bond skew

more positive (although more negative for the Gilt options). The pure first order strike

price effects for the Gilt and US T-Bond are of opposite signs and this effect is offset by

the interaction with the level of the underlying (see β8). For both markets, one

interpretation of this interaction is that the degree of skewness is related to the level of the

underlying asset. For the Gilts, negative skews become more prevalent when the level of

the futures rise and for US T-Bonds, the level of negative skewness is reduced as the level

of the futures price rises. For the bond markets, there is more consistency in the

interaction of time and the level of the ATM implied volatility on the skewness

(compared to the Stock Index Options markets). For all four markets (although

insignificant for the US T-Bond), the higher the level of the expected variance, the more

negative the degree of skewness becomes. This could provide evidence for a similar

mechanism as the leverage effect identified for stock and stock index markets [See

Christie (1982)]. What the nature of this mechanism is remains unknown.
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Regarding time dependent effects, results suggest a similar mechanism exists for

both Bond and Stock Index Options. The significant coefficients for both β2 and β3

suggest that the longer the term of the option, the more negatively skewed the pattern.

As with the stock index options, consistent second order strike price effects are

found. Positive curvature is found (β9) with similar time related dynamics. As with the

stock index options, the curves become more extreme as the options expiration date is

approached. Market shocks fail to have either a significant or consistent impact on the

degree of curvature for Bond markets. For the two markets (Gilt and US T-Bonds) that

were observed both pre and post the 1987 Stock market crash, this effect is slightly

increased due to the crash. On the other hand, market specific shocks either increase or

decrease the degree of curvature.

A significant negative relationship between the degree of the curvature and the

level of the ATM implied volatility is also found (similar to that of stock index options).

In addition, a similar negative relationship between the level of the underlying asset and

the degree of curvature tends to occur (the exception is for the BTP options market). For

these markets, it would appear that market agents lower their expectations about the level

of excess kurtosis (for future market returns) when levels of expected market variance fall

and prices of the underlying assets rise.

The final result which is consistent between bond and stock index options markets

is the evidence of a significant third order strike price effect (STRIKE3). For all eight

markets, this effect was found to be positive and of a similar magnitude. One possible

interpretation is that when market agents assess the excess kurtosis of future returns, they

assign some degree of asymmetry to it.

For the remaining independent variables, no single variable is consistently

significant for the four markets. For the US T-Bond options, many of the variables, which

should be insignificant, are. This may suggest an error in the construction of variables

may be present. However, alternative regression approaches have been able to eliminate

these problems without substantial changes in the signs or levels of the other independent

variables of interest. As with the stock index options, the inclusion of the VSI (Lag –1)

and MA (1) variables are jointly only significant for the US T-Bond market. For the other

markets, only the lagged VSI (Lag –1) variable is significant.
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6.3 FOREIGN EXCHANGE OPTIONS

For the foreign exchange options markets, there is a further reduction in the

explanatory power of the models. However, the worst R-squared statistic (of 0.8143 for

the Swiss Franc) indicates that the model is still explaining the vast majority of the

variance. As was previously reported for the Stock Index and Bond markets, the Durbin-

Watson test statistics indicate no problems with serial correlation of residuals.

 The coefficients for the first order strike price effects are divergent to the two

previous asset classes and suggest alternative dynamics may be in effect. In Table 3, the

pure first order strike price effect is significantly negative for three of the four markets,

while this effect is time invariant. As was previously observed for US T-Bond options,

this is offset by the positive relationship between the interaction of the level of the

underlying futures price and the skewness. This suggests that when futures prices are low

(high), the implied volatility pattern becomes more negatively (positively) skewed.

It appears that the skewness of the implied volatility pattern is not systematically

affected by market specific shocks. The 1987 stock market crash has a small (but

significantly) negative impact on the degree of skewness only for Deutsche Mark options.

For both the Deutsche Mark and Japanese Yen markets, a negative relationship between

the level of the ATM implied volatility and the degree of skewness is found. These results

are similar to those found for the Stock Index and Bond option markets.

For the second order strike price effects, more consistency exists relative to the

two previous asset classes. The pure curvature effect is consistently positive as is the first

and second order impacts of TIME. As previously discussed, this result suggests that the

curvature of the implied volatility patterns becomes more extreme as the options

expiration date is approached. Market specific shocks do change the degree of curvature

in the implied volatility pattern; tending to flatten the curve (including the 1987 stock

market crash). Consistent with the two previous asset classes, a negative relationship is

found between the curvature and the level of the ATM implied volatility. Finally, the

level of the underlying futures does interact with the curvature of the implied volatility

surface. Only for the Japanese Yen is this effect significant (and is slightly negative).

A significant third order strike price effect is observed for all four foreign

exchange option markets. This effect is negative for all markets apart from the British

Pound (which was only slightly positively significant). This is the opposite effect

observed for stock index and bond options. Of the remaining independent variables, the
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only variable that is consistently significant across all the four markets is the ATMVOL

variable. As the prior expectation is insignificance, the negative relationship could

suggest some systematic error in the estimation of this variable has occurred. Alternative

regression approaches serve to reduce the significance of this variable without

substantially changing the results for the other independent variables. Finally, the

variables included to address problems with serial correlations in residuals tend to be

either insignificant (or low levels of significance).

6.4 FORWARD DEPOSIT OPTIONS

A review of the OLS Regression model for the deposit futures options markets,

which appears in Table 4, seems to suggest these markets display similar dynamics to

foreign exchange options markets. The levels of explanatory power of the model are

similar and the Durbin-Watson statistics suggest the serial correlation problem has been

addressed.

As with the currency options, the first order strike price effects are also fairly time

invariant (apart from barely significant negative relationships between time and the

skewness for the Euro Dollar and Euro Swiss options). When the pure first order strike

price effect has a large positive or negative value, this is offset by a opposite relationship

with the interaction between the level of the underlying futures price and the skewness.

As previously suggested: when futures prices are at extreme levels, a skewed pattern

occurs. Only for the Eurodollar and Euro D-mark markets, do specific shocks change the

degree of skewness of the implied volatility patterns; however, this effect is neither

systematic nor substantive. For only one market (Euro Sterling), was a significant

relationship found between the level of the ATM implied volatility and the degree of

skewness in the implied volatility pattern. Thus, it would appear that for deposit options,

no systematic skew pattern exists (this is consistent with Figure 4). When such a pattern

occurs this is related to extreme levels in the underlying forward interest rates.

For the second order strike price effects, results are consistent with those for the

other markets considered. The implied volatility patterns of all four markets are positively

curved and the first and second order impacts of TIME have a similar effect. As with the

currency markets, market specific shocks change the degree of curvature in the implied

volatility pattern: tending to flatten the curve (although the 1987 stock market crash

slightly increased the curvature for the Euro Dollar options). Consistent across all asset

classes, a significantly negative relationship is found between the degree of curvature and
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the level of the ATM implied volatility. In a similar manner to that observed for currency

options, there tends to be a negative relationship between the level of the underlying

futures and the degree of curvature of the implied volatility surface. For all four markets

this effect is negative, however, for only two markets is this effect significant (Euro D-

mark and Euro Swiss).

For the first time, the third order strike price variable, (STRIKE3), is no longer

significant for all four markets. Only for the Euro Swiss and Euro Dollar options is this

significant and the signs of the regression coefficients are of opposite signs. Furthermore,

the levels of the T-statistics are relatively low compared to the same T-statistics for this

variable for markets in the other asset classes.

As the coefficients of the remaining variables vary across markets, we conclude

that any errors in the measurement of our variables are neither systematic nor consistent

across these four markets or between the four asset classes. Furthermore, there is no

consistency in the significance the VSI (Lag –1) and MA (1) variables across these four

markets (or across all sixteen markets, for that matter). Therefore, we conclude that the

results presented here are not due to misspecification of the models or the estimation

procedure and are robust.

7. THE PREDICTIVE POWER OF THE MODELS

A key concern in any modelling of this kind is that the high degree of explanatory

power is due to over-fitting within a defined sample period.  To address this issue two

tests were performed. The first test was to rerun all the regressions with every contract

included as a dummy variable. A contract is defined here as the individual expiration

cycle.  Given we have examined up to twelve years of options traded in the quarterly

cycle, we have forty-eight (48) separate contracts. We found that few of the contract

dummy variables were statistically significant and unsubstantial changes in the

coefficients of the key variables of interest to this research were found. The second test

entailed splitting the data set of available options prices into two sets. These periods were

divided roughly into halves. Relying solely on data from the first half of the observations,

we re-ran the regression [using the modified Newey-West (1987) estimator for the

weighting covariance matrix] and used these results to predict the standardised implied

volatilities in the second half of the available observations. The form of the regression

model appears in equation 4.

εβα +⋅+= *VSIVSI                  (4)
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Where VSI is the standardised implied volatility (smile index) outside of sample and VSI*

is the predicted standardised implied volatility (smile index) using the results from the

regression (equation 3) using the first half of the data sample. Our criteria for gauging

forecasting success outside of sample is the level of the adjusted R squared (to measure

the efficiency of the model), and the coefficients of the regression equation (to assess

whether the model is unbiased). The results of this test can be seen in Table 5 for all

sixteen markets.

Regarding efficiency, if the degree of explanatory power of the models is retained

compared to the first, second and overall periods, this indicates the estimation procedure

is efficient. Typically, if a model is over-fitting within sample, the explanatory power will

be lost outside of sample. In all cases this is not found and thus, we conclude that the

results are not period specific.21

If the models are unbiased estimators, the intercept would be (insignificantly

different from) zero and the slope coefficient would be (insignificantly different from)

one. For seven of the sixteen markets, the model is an unbiased estimator of the relative

implied volatilities in the out of sample period (DAX, Bund, US T-Bond, Deutsche Mark,

Euro Dollar, Euro Sterling and Euro D-Mark). While for the other nine markets the model

is a biased estimator, it could be that if the models were re-estimated through the sample

(updating for the impacts of shocks that may have occurred), the estimators would then be

unbiased. This remains for future research. However, it appears that these models are at

the very least efficient estimators and could possibly be unbiased estimators (as the

forecast horizon was shortened).

Under these assumptions, we conclude that regularities in implied volatility

surfaces exist and are similar for markets in the same asset classes. This result is fairly

time invariant. Furthermore, much regularity exists for the implied volatility surfaces of

all the markets examined.  These general results provide means to test alternative models,

which could potentially explain why implied volatility surfaces exist. An extension to this

research considers this problem and asks the question which possible models produce

options prices that are consistent with the results presented here.

8. CONCLUSIONS AND IMPLICATIONS

Of considerable interest to both practitioners and academics is a rational

explanation for the existence of implied volatility smiles. Prior to the development of

such an explanation, it would be helpful if the empirical dynamics of implied volatility
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surfaces could be better understood. Dumas, Fleming and Whaley (1996, 1998)

completed such research based upon the levels of implied volatilities and rejected the

existence of a deterministic volatility function.

This research looks at implied volatility functions in a different light by separating

out the impacts of implied volatility levels and concentrating solely on the relative shapes

of implied volatility surfaces.  Dumas, Fleming and Whaley (1996, 1998) may be correct

that the levels of implied volatilities today (and across strikes) provides no meaningful

information regarding future levels of implied volatility. However, this research

demonstrates that this result might be due to a stochastic implied volatility process. Once

levels are controlled for, regularities in relative surfaces are observed.

From an examination of implied volatility surfaces for sixteen options markets

(representing a cross section of Stock Indices, Bonds, Currencies and Forward Deposits),

we demonstrate that consistencies exist in the shapes of standardised surfaces for the

options in the same asset class. A functional form was formulated to better understand the

general behaviours. This functional form was evaluated using a modified weighted least

squares regression, which used the Newey-West (1987) estimator for the weighting

covariance matrix. Using this approach, vast majority (from 80-97%) of the variance in

the implied volatility surfaces for the sixteen option markets was explained. Tests of the

models outside of sample suggest the models are in all cases efficient estimators and in

many cases, unbiased estimators of future relative volatility patterns. The consistencies

between the models and the stability over time may suggest that market participants are

using a similar algorithm over-time to adjust option prices away from Black-Scholes-

Merton values and also may be using the same algorithm for different option markets.

The fact that all markets seem to rely on similar algorithm for adjusting option

prices away from Black Scholes values has implications for the testing of the information

content of implied volatility smiles. If smiles reflect market expectations of future asset

price processes, then these shapes must vary as new information arrives in the

marketplace. We find that standardised smiles do not vary substantially over time.

Recently, Bates (1999) examined implicit distributions associated with options on the

S&P 500 futures for a period post the 1987 crash and found that options prices did not

adjust as extreme (negative) moves failed to occur. His work also suggests that the

implied volatility smiles are stable over time and fail to incorporate new information.

The link between this research and Dumas, Fleming and Whaley (1996, 1998) is

the separation of the implied volatility functional form into two processes. The first
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process describes the dynamics of  the levels of implied volatility (and futures prices). In

this research, the second process was examined: how the relative levels of implied

volatilities vary across strike prices and time. Assuming the first process can be identified,

a two-step implied volatility functional form could be determined. Then,  it may make

sense to re-examine the question asked by Dumas, Fleming and Whaley (1996,1998).  It

is left for future research to examine how such an implied volatility function would

perform relative to the Black-Scholes model.

A more direct line of subsequent research would be to better understand the

nature of this algorithm. In subsequent research, alternative models are examined that

have been proposed to explain the existence of implied volatility surfaces. These models

are compared for internal consistency with these results. Such models would include the

Constant Elasticity of Variance model of Cox and Ross (1976), Jump diffusion models

and the stochastic volatility models of Heston (1993), Barndorff-Nielsen (1997) and

Barndorff-Nielsen and Shephard (1999). Correlated stochastic processes are also

considered. Alternatively, market imperfections would be considered as the reason for the

existence of implied volatility surfaces.

This research stands alone by formulating the correct questions to ask; by

uncovering regularities for implied volatility surfaces, which seem to summarise the

general phenomenon both within and between option markets on financial assets. This

provides future researchers with benchmarks for the comparison of suitable models and

insights into future models to be developed.
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FOOTNOTES:
                                                
1 The existence of the strike price effect has been pointed out extensively in the literature. Early
examples include: Black (1975), MacBeth and Merville (1979), Galai (1983,1987) and Rubinstein
(1985). Recent examples include: Xu and Taylor (1993) and Heynen, Kemna and Vorst (1994).
2 Dumas, Fleming and Whaley (1998) acknowledge that their research assumes a “null hypothesis” that
the volatility is an exact function of asset price and time. They also recognise that volatility may be
stochastic and given the difficulty in estimation of these processes and preference free option valuation,
they suggest this for further research. This research eliminates this problem by indexing all volatilities
to the level of the ATM volatility. Subsequent research will examine whether stochastic volatility
models are sufficient to explain the relative shapes of implied volatility surfaces.
3 For the DAX options and FTSE options, these were actually on the cash index. However, these
products were European style options expiring on the same day as the Futures for these markets. Thus,
these options can be considered as de facto options on futures.
4 These contracts all represent 3 month offered deposit rates between Banks in London for the
respective currencies. The Sterling contract is commonly referred to as Short Sterling.
5 In total, the number of option prices examined for all sixteen markets was 1,862,473. Given that we
also had the underlying futures prices for the same dates (and at the same time) as the options, we were
able to assure that both time series were consistent to each other. From this analysis, we were able to
clean both series and assure our analysis was minimally impacted by errors in data.
6 The London International Financial Futures Exchange (LIFFE):Euro Sterling, Euro D-mark, Euro
Swiss, BTPs, Bunds, Gilts and the FTSE 100. The Chicago Board of Trade (CBOT): US T-Bond
Futures and Options. The Deutsche Terminbörse (DTB): DAX futures and options, The Chicago
Mercantile Exchange (CME): Euro Dollar, S&P 500, Nikkei 225, Deutsche Mark, British Pound, Swiss
Franc and Japanese Yen.
7 In the instance that put and call options with the same time to expiration and same striking prices have
different implied volatilities, this indicates that Put-Call Parity is violated and that an arbitrage
opportunity may exist. In reality, it would most probably suggest that one of the option prices might be
“old”. From the previously quoted references, this would most probably be the in-the-money option.
Given that liquidity problems should not exist when dealing in the underlying futures, it would be a
simple matter to combine the out-of-the-money options with a position in the futures contract to create
an in-the-money option with exactly the same implied volatility. It might be possible for markets where
selling the underlying asset is prohibited, one would have to examine put and call smiles separately.
However, the restriction of this research to options on actively traded futures contracts precludes this
case and thus, the smiles we have estimated are not two branches glued together at the at-the-money
level, but (by Put-Call parity) seamless.
8 This manner of expressing the strike price is similar to the d2 term that appears in the Black Scholes
formula. It is common market practice in the currency options market to express strike prices in terms
of the delta [N(d2)] and quote implied volatilities relative to this. This approximately expresses
equation 1 as a probability.
9 It is acknowledged that whenever some method of standardisation is employed, a loss of information
(detail) results. However, given our objective is to compare smile behaviours both cross-sectionally and
across time, we believe the loss of information by standardising is more that made up by the ability to
compare smile dynamics within and between markets more directly. Furthermore, we will subsequently
test for the importance of the levels of the underlying asset and the levels of the ATM volatility to
assess what is lost in the standardisation process. It will be demonstrated that for many of the markets,
the levels of the expected volatility and the underlying asset do impact the shape of the implied
volatility smile. However, these effects are secondary to the more general relative strike price effects.
10 The first approach used was to determine the quadratic functional form that fits the volatility smile.
This used a quadratic approach suggested by Shimko [see Shimko (1991,1993)]. We found two major
problems with this approach. The first is that for many days, we had barely enough degrees of freedom
(options prices) to determine the quadratic form. Secondly, many of our markets (the US T-Bond
market in particular) were not well described by a quadratic function.
11 Data was restricted to weekly observations to reduce the size of the data set.
12 Later in this paper, we will demonstrate that to correctly understand the characteristics of implied
volatility surfaces a simple quadratic model of this form is inadequate. However, this goal here is to
generate implied volatility surfaces which will provide qualitative insights into the nature of the
complete model that will be developed later.
13 The results of the regressions are available from the author by request.
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14 The nature of this expansion will embed the functional form of Dumas, Fleming and Whaley (1996)
and subsequent analysis will assess if the addition of higher moments is warranted.
15 Given that there are two time related interactions for the first order strike price, for the sake of
consistency, we added another second order time interaction for the second order strike price effect.
Thus, the final model is a mixture of a Taylor's series expansion to degree three and four.
16 The logarithm, rather the absolute level, was used due to the wide discrepancies in the levels of the
futures for the sixteen markets.
17 Standardisation of variables is common in economic problems, when the objective is to remove
impacts of scaling. As was discussed previously, we are not interested per se in the absolute level of the
volatility or of the smile but of the relative relationships. This will allow for both inter-temporal
comparisons within markets and allow comparisons between markets. The inclusion of the levels of the
ATM volatility and the futures price will provide a check that important dynamics of the models have
not been missed.
18 The t-statistics for all the independent variables indicate whether the coefficient is statistically
significantly different than zero. For the intercept, the t-statistic indicates whether the coefficient
(alpha) is statistically significantly different than 100.
19 Exceptions include the variables that include SHOCK1 for the S&P and FTSE and variables that
include CRASH for the DAX and Nikkei. For the S&P and FTSE, the CRASH and SHOCK1 represent
the same event. For the DAX and Nikkei, given that the available observations were only available
after the CRASH, it makes no sense to include a variable with no variance.
20 The first order effects of time have a straightforward economic interpretation. A negative relationship
indicates that more (less) the time to expiration, the more (less) negatively skewed the implied
volatility surface.  The higher order time effects do not lend themselves to such an interpretation. They
are included solely to assess if higher order time effects exist, which the results suggest they do.
21 As an alternative to test for model stability, a Chow test was done to assess if structural breaks
occurred in the models over time and whether the coefficients of the model estimated during the first
period are the same in the second period. For seven of the sixteen markets, the Chow test is rejected
that the models differ over the latter period. Results available from the Author upon request



Figure 1 Standardized Volatility Smiles for Four Stock Index Options.
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Figure 2 Standardized Volatility Smiles for Four Fixed Income Options.
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Figure 3 Standardized Volatility Smiles for Four Foreign Exchange Options.
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Figure 4 Standardized Volatility Smiles for Four Deposit Futures Options
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S&P FTSE DAX NIKKEI
FACTOR

COEFFICIENT Standard Error T-Statistic COEFFICIENT Standard Error T-Statistic COEFFICIENT Standard Error T-Statistic COEFFICIENT Standard Error T-Statistic
INTERCEPT α 112.5529 3.8943 3.2234 144.4129 11.1383 3.9874 129.8403 11.8207 2.5244 66.7070 12.0736 -2.7575

Strike β1 0.7758 3.2827 0.2363 -0.4717 8.4780 -0.0556 32.7169 17.8516 1.8327 -7.7881 13.0432 -0.5971
Strike*Time β2 -60.6282 5.2257 -11.6019 -22.3234 6.7130 -3.3254 -54.1673 7.9548 -6.8094 -49.9658 7.1079 -7.0296
Strike*Time2 β3 145.6912 21.0371 6.9254 51.4133 28.6409 1.7951 109.2315 34.4809 3.1679 131.1086 27.1930 4.8214
Strike*Crash β4 -9.8164 1.1849 -8.2848 -5.1654 0.9317 -5.5444 -.-- -.-- -.-- -.-- -.-- -.--

Strike*Shock1 β5 -.-- -.-- -.-- -.-- -.-- -.-- 0.9376 1.0075 0.9306 3.1299 0.4703 6.6549
Strike*Shock2 β6 -5.7732 0.4584 -12.5934 -0.4780 0.7503 -0.6371 -0.1044 0.7926 -0.1317 -.-- -.-- -.--
Strike*ATMVol β7 -12.6910 2.0084 -6.3188 9.2285 4.5735 2.0178 2.5245 6.9852 0.3614 -11.9768 3.3179 -3.6098
Strike*Futures β8 0.5478 0.4992 1.0974 -0.2194 1.0955 -0.2003 -5.2454 2.3364 -2.2451 0.3171 1.5899 0.1995

Strike2 β9 4.0899 1.3766 2.9711 11.0025 3.3226 3.3114 30.5738 7.2094 4.2408 27.8304 5.8869 4.7275
Strike2*Time β10 -11.0515 2.1133 -5.2296 -5.2214 2.5553 -2.0434 -19.1005 4.5420 -4.2053 -16.4787 3.8459 -4.2848
Strike2*Time2 β11 17.2993 8.6666 1.9961 -6.6542 10.7172 -0.6209 39.4873 21.6987 1.8198 43.5733 15.8246 2.7535
Strike2*Crash β12 0.1848 0.4914 0.3760 -1.1158 0.4791 -2.3290 -.-- -.-- -.-- -.-- -.-- -.--

Strike2*Shock1 β13 -.-- -.-- -.-- -.-- -.-- -.-- 0.1566 0.6467 0.2421 0.2022 0.2403 0.8412
Strike2*Shock2 β14 -0.7228 0.1741 -4.1525 -1.1992 0.3939 -3.0445 -0.1715 0.4554 -0.3766 -.-- -.-- -.--
Strike2*ATMVol β15 -2.9292 0.8934 -3.2786 -9.8855 1.7387 -5.6856 -15.4169 2.8584 -5.3935 -8.2517 1.4342 -5.7537
Strike2*Futures β16 0.2752 0.2103 1.3086 -0.2862 0.4246 -0.6740 -3.0408 0.9415 -3.2295 -2.8937 0.7249 -3.9919

Strike3 β17 0.7057 0.0284 24.8916 0.3712 0.0231 16.0859 0.3302 0.0423 7.8163 0.2875 0.0385 7.4582
Crash β18 2.3587 0.5038 4.6821 4.1239 0.8081 5.1032 -.-- -.-- -.-- -.-- -.-- -.--

Shock1 β19 -.-- -.-- -.-- -.-- -.-- -.-- 0.0240 0.5375 0.0447 0.9170 0.4123 2.2238
Shock2 β20 0.8997 0.4679 1.9227 0.9857 0.7698 1.2805 1.1241 0.4337 2.5921 -.-- -.-- -.--
ATMVol β21 -13.6348 2.7373 -4.9812 -12.5904 4.8812 -2.5794 -4.4018 5.0038 -0.8797 2.5642 3.1163 0.8228
Futures β22 -2.7819 0.6335 -4.3915 -6.0349 1.4290 -4.2231 -4.5176 1.5681 -2.8810 3.4582 1.4963 2.3111

Time β23 13.4882 17.3448 0.7777 -0.0743 24.2387 -0.0031 70.9480 22.1621 3.2013 44.7074 24.0370 1.8599
Time2 β24 -200.9370 135.1397 -1.4869 -307.0035 205.5521 -1.4936 -571.7012 167.5899 -3.4113 -174.9146 196.9818 -0.8880
Time3 β25 580.3829 321.6341 1.8045 1405.4300 538.0266 2.6122 1337.3390 384.9428 3.4741 100.6179 471.9337 0.2132

VSI (Lag -1) β26 0.0374 0.0059 6.3617 0.0064 0.0080 0.7981 0.0135 0.0086 1.5714 0.0343 0.0124 2.7562
MA (1) β27 0.4377 0.0184 23.8351 0.3405 0.3717 0.9161 0.1662 0.0336 4.9466 0.4282 0.3051 1.4034

(Observations) (Observations) (Observations) (Observations)
(12387) (6980) (2768) (3525)

R-Squared 0.9682 R-Squared 0.9051 R-Squared 0.9508 R-Squared 0.9331

Durbin-Watson 1.7516 Durbin-Watson 1.8500 Durbin-Watson 1.9539 Durbin-Watson 1.6839

Table 1 Newey-West Weighted Least Squares Results for Four Stock IndexOptions



BUND BTP GILT USTB
FACTOR

COEFFICIENT Standard Error T-Statistic COEFFICIENT Standard Error T-Statistic COEFFICIENT Standard Error T-Statistic COEFFICIENT Standard Error T-Statistic
INTERCEPT α 90.1241 9.6324 -1.0253 93.4820 6.5113 -1.0010 110.2127 4.9347 2.0696 164.2291 10.5907 6.0647

Strike β1 4.1695 10.1102 0.4124 -0.0069 6.2191 -0.0011 14.5242 6.2741 2.3150 -21.1893 3.8365 -5.5230
Strike*Time β2 -27.0100 4.8666 -5.5501 -35.9255 6.4038 -5.6100 -10.6773 4.1879 -2.5496 -6.5871 3.0859 -2.1346
Strike*Time2 β3 90.5437 16.9592 5.3389 134.7295 22.6181 5.9567 25.3171 14.5486 1.7402 7.2328 12.4586 0.5806
Strike*Crash β4 -.-- -.-- -.-- -.-- -.-- -.-- -1.8926 0.3837 -4.9321 1.2198 0.2285 5.3389

Strike*Shock1 β5 -1.8822 0.3334 -5.6459 -0.2927 0.5469 -0.5351 -0.6180 0.3275 -1.8869 -3.3954 0.5187 -6.5461
Strike*Shock2 β6 -2.0803 0.2568 -8.0997 -2.3887 0.2518 -9.4879 -3.5251 0.2257 -15.6212 0.0064 0.1715 0.0376
Strike*ATMVol β7 -73.0321 6.8914 -10.5976 -38.7366 6.4640 -5.9926 -24.3095 4.4137 -5.5077 -2.5196 3.3671 -0.7483
Strike*Futures β8 0.1318 2.2145 0.0595 -0.0566 1.3433 -0.0421 -2.3768 1.1924 -1.9933 4.4781 0.8098 5.5298

Strike2 β9 23.3449 4.9258 4.7393 11.9812 3.2168 3.7246 18.5097 2.9154 6.3490 16.8941 1.3494 12.5196
Strike2*Time β10 -27.4792 2.8224 -9.7360 -5.1893 1.7108 -3.0333 -21.4837 2.4259 -8.8559 -11.9695 1.0283 -11.6406
Strike2*Time2 β11 71.7697 10.2548 6.9986 24.1646 16.3645 -1.4766 45.3785 9.2167 4.9235 29.1882 4.2724 6.8318
Strike2*Crash β12 -.-- -.-- -.-- -.-- -.-- -.-- 0.7074 0.2178 3.2475 0.3074 0.0699 4.4000

Strike2*Shock1 β13 1.0418 0.2142 4.8640 -0.0617 0.2749 -0.2244 1.2295 0.2767 4.4433 -0.0934 0.1737 -0.5378
Strike2*Shock2 β14 -0.6297 0.1315 -4.7884 0.2010 0.1072 1.8740 -0.5041 0.1194 -4.2231 -0.0649 0.0541 -1.1992
Strike2*ATMVol β15 -12.3633 4.0766 -3.0327 -7.0910 3.2264 -2.1978 -25.7363 2.3080 -11.1512 -8.3491 0.9768 -8.5478
Strike2*Futures β16 -3.9625 1.0773 -3.6780 3.6632 0.7105 5.1555 -2.8461 0.5857 -4.8590 -2.4367 0.2920 -8.3450

Strike3 β17 0.1192 0.0297 4.0085 0.3393 0.0280 12.1226 0.0996 0.0289 3.4430 0.1980 0.0107 18.5892
Crash β18 -.-- -.-- -.-- -.-- -.-- -.-- 0.1391 0.4148 0.3355 -0.7634 0.7680 -0.9939

Shock1 β19 -0.1055 0.2959 -0.3564 -0.3266 0.5205 -0.6274 -0.7773 0.3948 -1.9686 4.7248 0.9348 5.0545
Shock2 β20 -0.3235 0.2334 -1.3859 -0.6138 0.2360 -2.6012 0.1447 0.1916 0.7553 -1.4898 0.4927 -3.0237
ATMVol β21 19.1036 6.5853 2.9009 8.0921 5.3609 1.5095 5.4719 3.8139 1.4347 -30.8738 8.7424 -3.5315
Futures β22 -1.6761 2.0563 -0.8151 -0.2517 1.3836 -0.1819 -3.8454 0.9589 -4.0102 -14.1961 2.3370 -6.0745
Time β23 9.2376 17.7084 0.5217 -0.4178 19.5615 -0.0214 -12.4042 15.5380 -0.7983 54.4361 19.0843 2.8524
Time2 β24 222.5889 139.2893 1.5980 57.2906 154.8615 0.3699 305.6785 123.6076 2.4730 -417.0151 162.4247 -2.5674
Time3 β25 -1060.6010 335.4081 -3.1621 -233.6359 365.8936 -0.6385 -972.1242 295.5201 -3.2895 1013.4470 417.9372 2.4249

VSI (Lag -1) β26 0.1425 0.0176 8.1001 0.0648 0.0101 6.4046 0.0634 0.0096 6.5872 -0.0259 0.0080 -3.2395
MA (1) β27 0.2927 0.2171 1.3485 0.3465 0.2361 1.4677 0.2517 0.1891 1.3310 0.3568 0.0195 18.3071

(Observations) (Observations) (Observations) (Observations)
(8248) (8588) (9058) (9528)

R-Squared 0.8575 R-Squared 0.8946 R-Squared 0.8457 R-Squared 0.9243

Durbin-Watson 1.8309 Durbin-Watson 1.8078 Durbin-Watson 1.8845 Durbin-Watson 1.7885

Table 2 Newey-West Weighted Least Squares Results for Four Fixed Income Options



D-MARK POUND YEN S-FRANC
FACTOR

COEFFICIENT Standard Error T-Statistic COEFFICIENT Standard Error T-Statistic COEFFICIENT Standard Error T-Statistic COEFFICIENT Standard Error T-Statistic
INTERCEPT α 72.4670 4.9560 -5.5555 95.4712 1.3174 -3.4376 94.6109 3.7485 -1.4377 86.4974 3.0676 -4.4017

Strike β1 -12.2603 5.0974 -2.4052 1.6828 2.7099 0.6210 -18.0848 3.4924 -5.1783 -13.7514 3.2133 -4.2796
Strike*Time β2 0.0099 3.3792 0.0029 2.8543 3.5800 0.7973 -2.7897 3.9805 -0.7008 2.8849 3.7101 0.7776
Strike*Time2 β3 3.7369 12.9873 0.2877 -3.5049 13.4668 -0.2603 5.9217 15.5112 0.3818 -7.6842 14.9306 -0.5147
Strike*Crash β4 -0.8486 0.2560 -3.3147 -0.4563 0.3146 -1.4504 -1.4999 0.8709 -1.7221 0.1470 0.8324 0.1766

Strike*Shock1 β5 -3.1738 0.5966 -5.3199 -1.8039 2.6943 -0.6695 1.3668 0.8234 1.6599 -3.2878 0.4965 -6.6224
Strike*Shock2 β6 0.2651 0.1689 1.5693 0.0834 0.1904 0.4379 1.3197 0.2238 5.8976 -0.6209 0.8415 -0.7378
Strike*ATMVol β7 -12.1557 3.0794 -3.9474 4.0336 2.5539 1.5794 -11.9640 3.4682 -3.4496 -4.5003 2.8437 -1.5826
Strike*Futures β8 2.7393 0.8550 3.2040 -2.0360 1.1933 -1.7063 3.0821 0.5584 5.5197 2.7131 0.5208 5.2092

Strike2 β9 9.8714 2.8745 3.4342 11.3579 2.0164 5.6328 11.1604 1.4097 7.9167 11.2045 1.8683 5.9972
Strike2*Time β10 -17.9669 1.6716 -10.7481 -14.8523 1.7838 -8.3264 -15.3218 1.9355 -7.9163 -20.9719 1.9401 -10.8099
Strike2*Time2 β11 44.5694 7.0987 6.2785 34.4158 8.1326 4.2318 35.5199 7.9802 4.4510 61.3308 8.3455 7.3489
Strike2*Crash β12 0.2115 0.1097 1.9282 -1.2826 0.1994 -6.4315 -0.7429 0.3345 -2.2212 0.4690 0.2487 1.8859

Strike2*Shock1 β13 -1.0457 0.3070 -3.4064 -3.4025 2.0096 -1.6931 0.6886 0.3073 2.2407 -1.7776 0.2173 -8.1794
Strike2*Shock2 β14 -0.0696 0.0874 -0.7967 0.3809 0.0953 3.9975 0.3517 0.0914 3.8465 0.1932 0.2423 0.7977
Strike2*ATMVol β15 -16.1779 1.5188 -10.6519 -20.2335 1.1213 -18.0451 -9.2916 1.5396 -6.0352 -16.1880 1.5785 -10.2552
Strike2*Futures β16 -0.3591 0.4877 -0.7364 -0.1681 0.6069 -0.2769 -0.7984 0.2270 -3.5172 -0.5263 0.2965 -1.7750

Strike3 β17 -0.0840 0.0177 -4.7548 0.0301 0.0150 2.0033 -0.1617 0.0161 -10.0293 -0.0582 0.0181 -3.2203
Crash β18 -0.0735 0.2299 -0.3197 -0.0629 0.2575 -0.2443 3.7814 0.7132 5.3021 1.2657 0.6408 1.9750

Shock1 β19 -1.3660 0.5604 -2.4374 -0.3480 0.4673 -0.7448 -3.9406 0.6837 -5.7638 -1.5283 0.5812 -2.6294
Shock2 β20 -1.1984 0.1601 -7.4845 0.1498 0.1872 0.8003 1.5237 0.2610 5.8381 -2.4258 0.6311 -3.8440
ATMVol β21 -18.2090 3.4949 -5.2102 -7.8566 2.6705 -2.9420 -28.3911 4.6670 -6.0833 -33.6483 4.4511 -7.5595
Futures β22 4.4408 0.8421 5.2734 3.7039 1.0443 3.5468 0.5409 0.6279 0.8614 2.1662 0.5119 4.2316
Time β23 24.7370 12.6599 1.9540 14.7252 15.1195 0.9739 22.3184 17.5110 1.2745 46.0473 14.4805 3.1800
Time2 β24 -176.6624 103.5210 -1.7065 -159.3613 121.7005 -1.3095 -175.9706 137.7423 -1.2775 -229.3907 118.3906 -1.9376
Time3 β25 347.4788 252.5897 1.3757 424.9866 289.9265 1.4658 319.9840 331.8644 0.9642 302.7454 292.3453 1.0356

VSI (Lag -1) β26 0.0309 0.0078 3.9708 0.0344 0.0122 2.8072 0.0497 0.0083 6.0226 0.0388 0.0119 3.2696
MA (1) β27 0.2094 0.1679 1.2470 0.1578 0.0269 5.8774 0.2235 0.0201 11.1369 0.1907 0.0185 10.3341

(Observations) (Observations) (Observations) (Observations)
(11079) (9190) (12998) (11834)

R-Squared 0.8679 R-Squared 0.8890 R-Squared 0.8785 R-Squared 0.8143

Durbin-Watson 1.9307 Durbin-Watson 1.9635 Durbin-Watson 1.9289 Durbin-Watson 1.9664

Table 3 Newey-West Weighted Least Squares Results for Four Foreign Exchange Options



EuroDm Sterling Euro Swiss Euro Dollar
FACTOR

COEFFICIENT Standard Error T-Statistic COEFFICIENT Standard Error T-Statistic COEFFICIENT Standard Error T-Statistic COEFFICIENT Standard Error T-Statistic
INTERCEPT α 83.2542 5.2596 -3.1839 72.9841 3.9575 -6.8266 97.8610 3.6676 -0.5832 96.8221 6.7225 -0.4727

Strike β1 15.7896 2.5422 6.2109 0.5219 2.9857 0.1748 1.2848 2.3061 0.5571 -21.5941 5.7825 -3.7344
Strike*Time β2 -13.7193 12.8746 -1.0656 -9.9587 10.2413 -0.9724 -23.1232 11.9202 -1.9398 -17.7000 6.5152 -2.7167
Strike*Time2 β3 29.5152 40.7386 0.7245 35.0393 33.6628 1.0409 62.4600 40.4736 1.5432 69.2100 23.4231 2.9548
Strike*Crash β4 -.-- -.-- -.-- -.-- -.-- -.-- -.-- -.-- -.-- 0.2459 0.8004 0.3073

Strike*Shock1 β5 -6.6494 0.9038 -7.3568 -.-- -.-- -.-- -1.0652 0.8305 -1.2825 -3.1015 0.7552 -4.1066
Strike*Shock2 β6 1.7616 0.8478 2.0779 -.-- -.-- -.-- -1.3984 1.0132 -1.3802 -2.4742 0.5809 -4.2591
Strike*ATMVol β7 -11.6524 6.7694 -1.7213 -12.9478 3.6564 -3.5411 -3.4349 2.6480 -1.2972 -3.1628 5.0025 -0.6322
Strike*Futures β8 -5.9164 1.0163 -5.8216 0.3498 1.2161 0.2876 -1.0008 0.7497 -1.3349 4.1017 0.9568 4.2867

Strike2 β9 24.5748 2.0147 12.1978 14.7592 1.5607 9.4568 23.0928 1.0809 21.3640 6.1910 2.9800 2.0775
Strike2*Time β10 -60.7235 7.3423 -8.2704 -34.8030 6.1817 -5.6300 -54.5427 4.8914 -11.1507 -8.1500 2.9380 -2.7740
Strike2*Time2 β11 136.0443 24.0904 5.6472 57.2680 21.0374 2.7222 124.4244 16.7947 7.4085 30.4500 11.6875 2.6053
Strike2*Crash β12 -.-- -.-- -.-- -.-- -.-- -.-- -.-- -.-- -.-- 0.6162 0.3067 2.0091

Strike2*Shock1 β13 -2.0982 0.8074 -2.5985 -.-- -.-- -.-- -0.5744 0.5726 -1.0031 -2.0867 0.3187 -6.5472
Strike2*Shock2 β14 1.0541 0.6143 1.7159 1.6170 0.4446 3.6369 -2.5406 0.6287 -4.0408 0.1289 0.2971 0.4338
Strike2*ATMVol β15 -22.3818 5.5830 -4.0089 -24.5796 2.1681 -11.3369 -15.3987 1.4198 -10.8454 -6.4303 2.6758 -2.4031
Strike2*Futures β16 -3.9859 0.8164 -4.8822 -1.0107 0.5883 -1.7182 -4.5472 0.4217 -10.7835 -0.1122 0.5378 -0.2087

Strike3 β17 -0.0152 0.1447 -0.1053 -0.0037 0.0693 -0.0530 0.1918 0.0872 2.2004 -0.0375 0.0133 -2.8285
Crash β18 -.-- -.-- -.-- -.-- -.-- -.-- -.-- -.-- -.-- 1.3918 0.6303 2.2083

Shock1 β19 6.8496 1.7986 3.8082 -.-- -.-- -.-- -3.3670 1.1611 -2.8998 -3.1015 0.7552 -4.1066
Shock2 β20 -3.7482 1.5513 -2.4161 1.8905 1.0022 1.8864 1.3773 1.0910 1.2624 -2.4742 0.5809 -4.2591
ATMVol β21 -37.5994 13.5661 -2.7716 -0.4710 4.8882 -0.0963 -5.5316 3.7994 -1.4559 -80.5095 7.7229 -10.4248
Futures β22 -.-- -.-- -.-- -.-- -.-- -.-- -1.0516 1.1983 -0.8775 2.9781 1.0658 2.7941

Time β23 52.0547 47.0951 1.1053 12.2551 37.4148 0.3275 42.4584 54.6731 0.7766 -45.6482 16.5462 -2.7588
Time2 β24 -29.4479 359.5003 -0.0819 -1.0817 281.2288 -0.0038 0.0745 420.1949 0.0002 193.5206 141.0062 1.3724
Time3 β25 -356.9747 830.2662 -0.4300 -198.4319 649.7100 -0.3054 -386.5366 975.8212 -0.3961 -262.2998 363.0742 -0.7224

VSI (Lag -1) β26 0.0774 0.0117 6.6183 0.1018 0.0115 8.8821 0.0092 0.0152 0.6052 0.0131 0.0180 0.7255
MA (1) β27 0.2945 0.0272 10.8419 0.3541 0.4043 0.8757 0.2686 0.6143 0.4373 0.1907 0.0250 7.6185

(Observations) (Observations) (Observations) (Observations)
(3047) (5306) (2523) (5660)

R-Squared 0.8796 R-Squared 0.8118 R-Squared 0.8689 R-Squared 0.8006

Durbin-Watson 1.8365 Durbin-Watson 1.8090 Durbin-Watson 1.9098 Durbin-Watson 1.9447

Table 4  Newey-West Weighted Least Squares Results for Four Forward Deposit Options



Number of
Underlying Asset Alpha (Std Error) (T-test) Beta (Std Error) (T-test) R Squared Observations

S&P 500 Futures -6.4771 0.2826 -22.9192 1.0945 0.0024 39.1624 0.9709 6170
FTSE Futures -2.6428 0.8724 -3.0295 1.0192 0.0075 2.5532 0.8797 3439
Nikkei 225 Futures -3.0710 1.1890 -2.5829 1.0317 0.0111 2.8564 0.8907 1728
DAX Futures -2.7356 1.4186 -1.9283 1.0195 0.0125 1.5535 0.8668 1399

Bund Futures 2.3793 1.4596 1.6301 0.9733 0.0133 -2.0089 0.8557 4248
BTP Futures -2.7959 0.8734 -3.2010 1.0268 0.0082 3.2848 0.8484 4322
Gilt Futures -8.1257 1.4601 -5.5653 1.0733 0.0136 5.3972 0.8148 4616
US T-Bond Futures 0.6199 0.5992 1.0344 0.9920 0.0048 -1.6652 0.8984 4859

Deutsche Mark /US $ 0.5493 0.6637 -0.8276 0.9980 0.0061 -0.3336 0.8253 5694
British Pound /US $ -9.1584 0.6687 -13.6954 1.0949 0.0061 15.5463 0.8728 4685
Japanese Yen /US $ -17.0762 0.7984 -21.3870 1.1641 0.0073 22.6320 0.7955 6628
Swiss Franc /US $ -2.2100 0.7320 -3.0191 1.0102 0.0067 1.5157 0.7873 6063

Euro Dollar Futures 1.4041 1.0012 1.4024 0.9733 0.0109 -2.4471 0.8523 2423
Euro Sterling Futures 2.7785 1.9448 1.4287 0.9695 0.0186 -1.6401 0.7928 2604
Euro Dmark Futures 0.6241 0.9574 0.6518 0.9564 0.0076 -5.7252 0.8378 1557
Euro Swiss Futures -1.9672 0.8008 -2.4565 1.0060 0.0066 0.9096 0.9031 1251

Table 5    Regression Results for the Predicted Standardised Implied Volatilities in the Second Half of the Options
 Data Set (Outside of Sample) using the Regression Model for the First Half of the Options Data Set.
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